Murphy MP, LeVine H 3rd. Alzheimer’s disease and the β-amyloid peptide. J Alzheimers Dis. 2010;19(1):311–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol. 2015;14(4):388–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ewald CY, Li C. Caenorhabditis elegans as a model organism to study APP function. Exp Brain Res. 2012;217(3–4):397–411.
Article
CAS
PubMed
Google Scholar
Pozueta J, Lefort R, Shelanski ML. Synaptic changes in Alzheimer's disease and its models. Neuroscience. 2013;251:51–65.
Article
CAS
PubMed
Google Scholar
Li JJ, Dolios G, Wang R, Liao FF. Soluble beta-amyloid peptides, but not insoluble fibrils, have specific effect on neuronal microRNA expression. PLoS One. 2014;9(3):e90770.
Article
PubMed
PubMed Central
Google Scholar
Brothers HM, Gosztyla ML, Robinson SR. The physiological roles of amyloid-β peptide hint at new ways to treat Alzheimer’s disease. Front Aging Neurosci. 2018;10:118.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gosztyla ML, Brothers HM, Robinson SR. Alzheimer’s amyloid-beta is an antimicrobial peptide: a review of the evidence. J Alzheimers Dis. 2018;62(4):1495–506.
Article
CAS
PubMed
Google Scholar
Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med. 2016;8(340):340ra–372.
Article
CAS
Google Scholar
Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, et al. The Alzheimer's disease-associated amyloid β-protein is an antimicrobial peptide. PLoS One. 2010;5(3):e9505.
Article
PubMed
PubMed Central
CAS
Google Scholar
Finelli A, Kelkar A, Song HJ, Yang H, Konsolaki M. A model for studying Alzheimer's Aβ42-induced toxicity in Drosophila melanogaster. Mol Cell Neurosci. 2004;26(3):365–75.
Article
CAS
PubMed
Google Scholar
Prussing K, Voigt A, Schulz JB. Drosophila melanogaster as a model organism for Alzheimer’s disease. Mol Neurodegener. 2013;8:35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bilen J, Bonini NM. Drosophila as a model for human neurodegenerative disease. Annu Rev Genet. 2005;39:153–71.
Article
CAS
PubMed
Google Scholar
Greeve I, Kretzschmar D, Tschape JA, Beyn A, Brellinger C, Schweizer M, et al. Age-dependent neurodegeneration and Alzheimer-amyloid plaque formation in transgenic Drosophila. J Neurosci. 2004;24(16):3899–906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rival T, Page RM, Chandraratna DS, Sendall TJ, Ryder E, Liu B, et al. Fenton chemistry and oxidative stress mediate the toxicity of the β-amyloid peptide in a Drosophila model of Alzheimer’s disease. Eur J Neurosci. 2009;29(7):1335–47.
Article
PubMed
PubMed Central
Google Scholar
Liu H, Han M, Li Q, Zhang X, Wang WA, Huang FD. Automated rapid iterative negative geotaxis assay and its use in a genetic screen for modifiers of Aβ42-induced locomotor decline in Drosophila. Neurosci Bull. 2015;31(5):541–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iijima K, Liu HP, Chiang AS, Hearn SA, Konsolaki M, Zhong Y. Dissecting the pathological effects of human Aβ40 and Aβ42 in Drosophila: a potential model for Alzheimer's disease. Proc Natl Acad Sci U S A. 2004;101(17):6623–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keebaugh ES, Yamada R, Obadia B, Ludington WB, Ja WW. Microbial quantity impacts Drosophila nutrition, development, and lifespan. iScience. 2018;4:247–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao HW, Zhou D, Haddad GG. Antimicrobial peptides increase tolerance to oxidant stress in Drosophila melanogaster. J Biol Chem. 2011;286(8):6211–8.
Article
CAS
PubMed
Google Scholar
Loch G, Zinke I, Mori T, Carrera P, Schroer J, Takeyama H, et al. Antimicrobial peptides extend lifespan in Drosophila. PLoS One. 2017;12(5):e0176689.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shaposhnikov M, Latkin D, Plyusnina E, Shilova L, Danilov A, Popov S, et al. The effects of pectins on life span and stress resistance in Drosophila melanogaster. Biogerontology. 2014;15(2):113–27.
Article
CAS
PubMed
Google Scholar
Badinloo M, Nguyen E, Suh W, Alzahrani F, Castellanos J, Klichko VI, et al. Overexpression of antimicrobial peptides contributes to aging through cytotoxic effects in Drosophila tissues. Arch Insect Biochem Physiol. 2018;98(4):e21464.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pletcher SD, Macdonald SJ, Marguerie R, Certa U, Stearns SC, Goldstein DB, et al. Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol. 2002;12(9):712–23.
Article
CAS
PubMed
Google Scholar
Landis GN, Abdueva D, Skvortsov D, Yang J, Rabin BE, Carrick J, et al. Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2004;101(20):7663–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moskalev A, Shaposhnikov M. Pharmacological inhibition of NF-κB prolongs lifespan of Drosophila melanogaster. Aging (Albany NY). 2011;3(4):391–4.
Article
CAS
Google Scholar
Libert S, Chao Y, Chu X, Pletcher SD. Trade-offs between longevity and pathogen resistance in Drosophila melanogaster are mediated by NFκB signaling. Aging Cell. 2006;5(6):533–43.
Article
CAS
PubMed
Google Scholar
Cao Y, Chtarbanova S, Petersen AJ, Ganetzky B. Dnr1 mutations cause neurodegeneration in Drosophila by activating the innate immune response in the brain. Proc Natl Acad Sci U S A. 2013;110(19):E1752–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kounatidis I, Chtarbanova S, Cao Y, Hayne M, Jayanth D, Ganetzky B, et al. NF-κB immunity in the brain determines Fly lifespan in healthy aging and age-related neurodegeneration. Cell Rep. 2017;19(4):836–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sargaeva NP, Lin C, O'Connor PB. Identification of aspartic and isoaspartic acid residues in amyloid β peptides, including Aβ 1-42, using electron-ion reactions. Anal Chem. 2009;81(23):9778–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozin SA, Mitkevich VA, Makarov AA. Amyloid-β containing isoaspartate 7 as potential biomarker and drug target in Alzheimer’s disease. Mendeleev Communications. 2016;26(4):269–75.
Article
CAS
Google Scholar
Kumar S, Rezaei-Ghaleh N, Terwel D, Thal DR, Richard M, Hoch M, et al. Extracellular phosphorylation of the amyloid β-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer’s disease. EMBO J. 2011;30(11):2255–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Radyuk SN, Michalak K, Klichko VI, Benes J, Orr WC. Peroxiredoxin 5 modulates immune response in Drosophila. Biochim Biophys Acta. 2010;1800(11):1153–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Becker T, Loch G, Beyer M, Zinke I, Aschenbrenner AC, Carrera P, et al. FOXO-dependent regulation of innate immune homeostasis. Nature. 2010;463(7279):369–73.
Article
CAS
PubMed
Google Scholar
Huang Y, Wan Z, Wang Z, Zhou B. Insulin signaling in Drosophila melanogaster mediates Aβ toxicity. Commun Biol. 2019;2(1):13.
Article
PubMed
PubMed Central
Google Scholar
Ziehm M, Piper MD, Thornton JM. Analysing variation in Drosophila aging across independent experimental studies: a meta-analysis of survival data. Aging Cell. 2013;12(5):917–22.
Article
CAS
PubMed
Google Scholar
Moskalev A, Shaposhnikov M, Proshkina E, Belyi A, Fedintsev A, Zhikrivetskaya S, et al. The influence of pro-longevity gene Gclc overexpression on the age-dependent changes in Drosophila transcriptome and biological functions. BMC Genomics. 2016;17(S14):273–89.
Article
CAS
Google Scholar
Shaposhnikov MV, Zemskaya NV, Koval LA, Schegoleva EV, Zhavoronkov A, Moskalev AA. Effects of N-acetyl-L-cysteine on lifespan, locomotor activity and stress-resistance of 3 Drosophila species with different lifespans. Aging (Albany NY). 2018;10(9):2428–58.
Article
CAS
Google Scholar
Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nat Rev Mol Cell Biol. 2007;8(2):101–12.
Article
CAS
PubMed
Google Scholar
Chen H, Zheng X, Zheng Y. Age-associated loss of Lamin-B leads to systemic inflammation and gut hyperplasia. Cell. 2014;159(4):829–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arnés M, Casas-Tintó S, Malmendal A, Ferrús A. Amyloid β42 peptide is toxic to non-neural cells in Drosophila yielding a characteristic metabolite profile and the effect can be suppressed by PI3K. Biol Open. 2017;6(11):1664–71.
Article
PubMed
PubMed Central
CAS
Google Scholar
Austad SN, Bartke A. Sex differences in longevity and in responses to anti-aging interventions: a mini-review. Gerontology. 2015;62(1):40–6.
Article
PubMed
CAS
Google Scholar
Moskalev A, Zhikrivetskaya S, Krasnov G, Shaposhnikov M, Proshkina E, Borisoglebsky D, et al. A comparison of the transcriptome of Drosophila melanogaster in response to entomopathogenic fungus, ionizing radiation, starvation and cold shock. BMC Genomics. 2015;16(Suppl 13):S8.
Article
PubMed
PubMed Central
Google Scholar
Medeiros AM, Silva RH. Sex differences in Alzheimer’s disease: where do we stand? J Alzheimers Dis. 2019;67(1):35–60.
Article
PubMed
Google Scholar
Tower J. Sex-specific gene expression and life span regulation. Trends Endocrinol Metab. 2017;28(10):735–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barykin EP, Petrushanko IY, Kozin SA, Telegin GB, Chernov AS, Lopina OD, et al. Phosphorylation of the amyloid-Beta peptide inhibits zinc-dependent aggregation, prevents Na, K-ATPase inhibition, and reduces cerebral plaque deposition. Front Mol Neurosci. 2018;11:302.
Article
PubMed
PubMed Central
CAS
Google Scholar
Arvidsson S, Kwasniewski M, Riano-Pachon DM, Mueller-Roeber B. QuantPrime – a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinformatics. 2008;9(1):465.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mehta CR, Patel NR, Tsiatis AA. Exact significance testing to establish treatment equivalence with ordered categorical data. Biometrics. 1984;40(3):819–25.
Article
CAS
PubMed
Google Scholar
Wang C, Li Q, Redden DT, Weindruch R, Allison DB. Statistical methods for testing effects on “maximum lifespan”. Mech Ageing Dev. 2004;125(9):629–32.
Article
PubMed
Google Scholar
Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep. 1966;50(3):163–70.
CAS
PubMed
Google Scholar
Fleming TR, O'Fallon JR, O'Brien PC, Harrington DP. Modified Kolmogorov-Smirnov test procedures with application to arbitrarily right-censored data. Biometrics. 1980;36(4):607–25.
Article
Google Scholar
Han SK, Lee D, Lee H, Kim D, Son HG, Yang JS, et al. OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget. 2016;7(35):56147–52.
Article
PubMed
PubMed Central
Google Scholar