Ménard O, Ahmad S, Rousseau F, et al. Buffalo vs. cow milk fat globules: size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chem. 2010;120(2):544–51.
Article
CAS
Google Scholar
Ahmad S, Gaucher I, Rousseau F, et al. Effects of acidification on physico-chemical characteristics of buffalo milk: a comparison with cow’s milk. Food Chem. 2008;106(1):11–7.
Article
CAS
Google Scholar
Massaro M, Carluccio MA, De Caterina R. Direct vascular antiatherogenic effects of oleic acid: a clue to the cardioprotective effects of the Mediterranean diet. Cardiologia. 1999;44(6):507–13.
CAS
PubMed
Google Scholar
Pariza MW, Park Y, Cook ME. The biologically active isomers of conjugated linoleic acid. Prog Lipid Res. 2001;40(4):283–98.
Article
CAS
PubMed
Google Scholar
Clarke SD. Nonalcoholic steatosis and steatohepatitis. I. Molecular mechanism for polyunsaturated fatty acid regulation of gene transcription. Am J Physiol Gastrointest Liver Physiol. 2001;281(4):G865–9.
Article
CAS
PubMed
Google Scholar
Baumgard LH, Corl BA, Dwyer DA, et al. Effects of conjugated linoleic acids (CLA) on tissue response to homeostatic signals and plasma variables associated with lipid metabolism in lactating dairy cows. J Anim Sci. 2002;80(5):1285–93.
Article
CAS
PubMed
Google Scholar
Peterson DG, Matitashvili EA, Bauman DE. Diet-induced milk fat depression in dairy cows results in increased trans-10, cis-12 CLA in milk fat and coordinate suppression of mRNA abundance for mammary enzymes involved in milk fat synthesis. J Nutr. 2003;133(10):3098–102.
Article
CAS
PubMed
Google Scholar
Bernard L. Expression and Nutritional Regulation of Lipogenic Genes in the Ruminant Lactating Mammary Gland, vol. 606. New York: Springer New York; 2008. p. 67–108.
Google Scholar
Lee SH, Hossner KL. Coordinate regulation of ovine adipose tissue gene expression by propionate. J Anim Sci. 2002;80(11):2840–9.
Article
CAS
PubMed
Google Scholar
Wakil SJ. Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry-US. 1989;28(11):4523–30.
Article
CAS
Google Scholar
Corl BA, Baumgard LH, Dwyer DA, et al. The role of Delta (9)-desaturase in the production of cis-9, trans-11 CLA. J Nutr Biochem. 2001;12(11):622–30.
Article
CAS
PubMed
Google Scholar
Griinari JM, Corl BA, Lacy SH, et al. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Delta (9)-desaturase. J Nutr. 2000;130(9):2285–91.
Article
CAS
PubMed
Google Scholar
Corl BA, Baumgard LH, Griinari JM, et al. Trans-7, cis-9 CLA is synthesized endogenously by delta9-desaturase in dairy cows. LIPIDS. 2002;37(7):681–8.
Article
CAS
PubMed
Google Scholar
Keating AF, Kennelly JJ, Zhao FQ. Characterization and regulation of the bovine stearoyl-CoA desaturase gene promoter. Biochem Biophys Res Commun. 2006;344(1):233–40.
Article
CAS
PubMed
Google Scholar
Ahmad S, Anjum FM, Huma N, et al. Composition and physico-chemical characteristics of buffalo milk with particular emphasis on lipids, proteins, minerals, enzymes and vitamins. J Anim Plant Sci. 2013;23:62–74.
Google Scholar
Bionaz M, Loor JJ. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics. 2008;9(1):366.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren C, Wang L, Fan Y, et al. Scd1 contributes to lipid droplets formation in GMEC via transcriptional regulation of Tip47 and Adrp[J]. European Journal of Lipid Science and Technology. 2018;120(2):1700238.
Yao D, Luo J, He Q, et al. SCD1 alters long-chain fatty acid (LCFA) composition and its expression is directly regulated by SREBP-1 and PPARγ 1 in dairy goat mammary cells. J Cell Physiol. 2017;232(3):635–49.
Article
CAS
PubMed
Google Scholar
Bauman DE, Mather IH, Wall RJ, et al. Major advances associated with the biosynthesis of milk. J Dairy Sci. 2006;89(4):1235–43.
Article
CAS
PubMed
Google Scholar
Shimomura I, Hammer RE, Richardson JA, et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 1998;12(20):3182–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez-Cruz M, Sánchez R, Sánchez AM, et al. Participation of mammary gland in long-chain polyunsaturated fatty acid synthesis during pregnancy and lactation in rats. Biochimica Biophys Acta. 2011;1811(4):284–93.
Article
CAS
Google Scholar
Miyazaki M, Kim YC, Ntambi JM. A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals a stringent requirement of endogenous monounsaturated fatty acids for triglyceride synthesis. J Lipid Res. 2001;42(7):1018–24.
CAS
PubMed
Google Scholar
Kadegowda A, Bionaz M, Piperova LS, et al. Peroxisome proliferator-activated receptor-γ activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. J Dairy Sci. 2009;92(9):4276–89.
Article
CAS
PubMed
Google Scholar
Bitter A, Nussler AK, Thasler WE, et al. Human sterol regulatory element-binding protein 1a contributes significantly to hepatic lipogenic gene expression. Cell Physiol Biochem. 2015;35(2):803–15.
Article
PubMed
Google Scholar
Shimomura I, Shimano H, Horton JD, et al. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest. 1997;99(5):838–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimano H, Horton JD, Shimomura I, et al. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest. 1997;99(5):846–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schoonjans K, Peinado Onsurbe J, Lefebvre A, et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 1996;15(19):5336–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller CW, Ntambi JM. Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression. Proc Natl Acad Sci U S A. 1996;93(18):9443–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh AH, Liu S, Crombie DL, et al. Differential effects of rexinoids and thiazolidinediones on metabolic gene expression in diabetic rodents. Mol Pharmacol. 2001;59(4):765–73.
Article
Google Scholar
Shi H, Luo J, Zhu J, et al. PPARγ regulates genes involved in triacylglycerol synthesis and secretion in mammary gland epithelial cells of dairy goats. PPAR Res. 2013;2013:684159.
Article
CAS
Google Scholar
Bionaz M, Chen S, Khan MJ, et al. Functional role of PPARs in ruminants: potential targets for fine-tuning metabolism during growth and lactation. PPAR Res. 2013;2013:684159.
PubMed
PubMed Central
Google Scholar
Ntambi JM. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res. 1999;40(9):1549–58.
CAS
PubMed
Google Scholar
Rincon G, Islas-Trejo A, Castillo AR, et al. Polymorphisms in genes in the SREBP1 signalling pathway and SCD are associated with milk fatty acid composition in Holstein cattle. J DAIRY RES. 2012;79(1):66–75.
Article
CAS
PubMed
Google Scholar
Zidi A, Fernández-Cabanás VM, Urrutia B, et al. Association between the polymorphism of the goat stearoyl-CoA desaturase 1 (SCD1) gene and milk fatty acid composition in Murciano-Granadina goats. J Dairy Sci. 2010;93(9):4332–9.
Article
CAS
PubMed
Google Scholar
Pauciullo A, Cosenza G, D’Avino A, et al. Sequence analysis and genetic variability of stearoyl CoA desaturase (SCD) gene in the Italian Mediterranean river buffalo. Mol Cell Probe. 2010;24(6):407–10.
Article
CAS
Google Scholar
Loor JJ, Herbein JH. Reduced fatty acid synthesis and desaturation due to exogenous trans10, cis12-CLA in cows fed oleic or linoleic oil. J Dairy Sci. 2003;86(4):1354–69.
Article
CAS
PubMed
Google Scholar
Dobrzyn P, Pyrkowska A, Jazurek M, et al. Increased availability of endogenous and dietary oleic acid contributes to the upregulation of cardiac fatty acid oxidation. Mitochondrion. 2012;12(1):132–7.
Article
CAS
PubMed
Google Scholar
Listenberger LL, Han X, Lewis SE, et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci. 2003;100(6):3077–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hulver MW, Berggren JR, Carper MJ, et al. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab. 2005;2(4):251–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian P, Luo Y, Li X, et al. Negative effects of long-term feeding of high-grain diets to lactating goats on milk fat production and composition by regulating gene expression and DNA methylation in the mammary gland. J Anim Sci Biotechno. 2017;8(1):74.
Article
CAS
Google Scholar
Mele M, Conte G, Castiglioni B, et al. Stearoyl-coenzyme a Desaturase gene polymorphism and Milk fatty acid composition in Italian Holsteins. J Dairy Sci. 2007;90(9):4458–65.
Article
CAS
PubMed
Google Scholar
Brenaut P, Bangera R, Bevilacqua C, et al. Validation of RNA isolated from milk fat globules to profile mammary epithelial cell expression during lactation and transcriptional response to a bacterial infection. J Dairy Sci. 2012;95(10):6130–44.
Article
CAS
PubMed
Google Scholar
Yadav P, Deepak Singh D, Mukesh M, et al. Identification of suitable housekeeping genes for expression analysis in mammary epithelial cells of buffalo (Bubalus bubalis) during lactation cycle. Livest Sci. 2012;147(1–3):72–6.
Article
Google Scholar
Cai X, Liu Q, Zhang X, et al. Identification and analysis of the expression of microRNA from lactating and nonlactating mammary glands of the Chinese swamp buffalo. J Dairy Sci. 2017;100(3):1971–86.
Article
CAS
PubMed
Google Scholar
Li X, Li P, Wang L, et al. Lysine enhances the stimulation of fatty acids on Milk fat synthesis via the GPRC6A-PI3K-FABP5 signaling in bovine mammary epithelial cells. J Agr Food Chem. 2019;67(25):7005–15.
Article
CAS
Google Scholar