Minino A, Xu J, Kochanek K. Deaths: preliminary data for 2008. Natl Vital Stat Rep. 2010;59:1–52.
PubMed
Google Scholar
Wan ES, Silverman EK. Genetics of COPD and emphysema. Chest. 2009;136:859–66.
Article
PubMed
Google Scholar
Weiss ST. Lung function and airway diseases. Nat Genet. 2010;42(1):14–6.
Article
CAS
PubMed
Google Scholar
Silverman EK, Vestbo J, Agusti A, Anderson W, Bakke PS, Barnes KC, et al. Opportunities and challenges in the genetics of COPD 2010: an International COPD Genetics Conference report. COPD. 2011;8:121–35.
Article
PubMed Central
PubMed
Google Scholar
Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, et al. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: Gold executive summary. Am J Respir Crit Care Med. 2007;176:532–55.
Article
PubMed
Google Scholar
Wilk JB, DeStefano AL, Arnett DK, Rich SS, Djousse L, Crapo RO, et al. A genome-wide scan of pulmonary function measures in the National Heart, Lung, and Blood Institute Family Heart Study. Am J Respir Crit Care Med. 2003;167:1528–33.
Article
PubMed
Google Scholar
Wilk JB, Chen TH, Gottlieb DJ, Walter RE, Nagle MW, Brandler BJ, et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet. 2009;3(5):e1000429.
Article
Google Scholar
Hancock DB, Eijgelsheim M, Wilk JB, Gharib SA, Loehr LR, Marciante KD, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet. 2010;42:45–52.
Article
PubMed Central
CAS
PubMed
Google Scholar
Repapi E, Sayers I, Wain LV, Burton PR, Johnson T, Obeidat M, et al. Genome-wide association study identifies five loci associated with lung function. Nat Genet. 2010;42:36–44.
Article
PubMed Central
CAS
PubMed
Google Scholar
Soler Artigas M, Loth DW, Wain LV, Gharib SA, Obeidat M, Tang W, et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat Genet. 2011;43:1082–90.
Article
PubMed
Google Scholar
Wilk JB, Shrine NRG, Loehr LR, Zhao JH, Manichaikul A, Lopez LM, et al. Genome-Wide Association Studies Identify CHRNA5/3 and HTR4 in the Development of Airflow Obstruction. Am J Respir Crit Care Med. 2012;186(7):622–32.
Article
PubMed Central
CAS
PubMed
Google Scholar
Siedlinski M, Cho MH, Bakke P, Gulsvik A, Lomas DA, Anderson W, et al. Genome-wide association study of smoking behaviours in patients with COPD. Thorax. 2011;66(10):894–902.
Article
PubMed Central
PubMed
Google Scholar
Thyagarajan B, Wojczynski M, Minster RL, Sanders J, Barral S, Christiansen L, et al. Genetic variants associated with lung function: the long life study. Respir Res. 2014;15:134.
Article
PubMed Central
PubMed
Google Scholar
Lambrechts D, Buysschaert I, Zanen P, Coolen J, Lays N, Cuppens H, et al. The 15q24/25 susceptibility variant for lung cancer and chronic obstructive pulmonary disease is associated with emphysema. Am J Respir Crit Care Med. 2010;181:486–93.
Article
PubMed
Google Scholar
Castaldi PJ, Cho MH, Litonjua AA, Bakke P, Gulsvik A, Lomas DA, et al. The association of genome-wide significant spirometric loci with COPD susceptibility. Am J Respir Cell Mol Biol. 2011;45:1147–53.
Article
PubMed Central
CAS
PubMed
Google Scholar
DeMeo DL, Mariani T, Bhattacharya S, Srisuma S, Lange C, Litonjua A, et al. Integration of genomic and genetic approached implicates IREB2 as a COPD susceptibility gene. Am J Hum Genet. 2009;85:493–502.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang J, Summah H, Zhu YG, Qu JM. Nicotinic acetylcholine receptor variants associated with susceptibility to chronic obstructive pulmonary disease: a meta-analysis. Respir Res. 2011;12:158.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hardin M, Zielinski J, Wan ES, Hersh CP, Castaldi PJ, Schwinder E, et al. CHRNA3/5, IREB2, and ADCY2 Are Associated with Severe Chronic Obstructive Pulmonary Disease in Poland. Am J Respir Cell Mol Biol. 2012;47(2):203–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D, et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452:633–7.
Article
CAS
PubMed
Google Scholar
Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 2008;40:616–22.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gu M, Dong X, Zhang X, Wang X, Qi Y, Yu J, et al. Strong Association between Two Polymorphisms 15q25.1 on and Lung Cancer Risk: A Meta-Analysis. Plos ONE. 2012;7(6):e37970.
Article
PubMed Central
CAS
PubMed
Google Scholar
Spitz MR, Amos CI, Dong Q, Lin J, Wu X. The CHRNA5-A3 Region on Chr 15q24-25.1 Is a Risk Factor Both for Nicotine Dependence and for Lung Cancer. J Natl Cancer Inst. 2008;100:1552–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sakoda LC, Loomis MM, Doherty JA, Neuhouser ML, Barnett MJ, Thornquist MD, et al. Chr 15q24-25.1 variants, diet, and lung cancer susceptibility in cigarette smokers. Cancer Causes Control. 2011;22:449–61.
Article
PubMed Central
PubMed
Google Scholar
Siedlinski M, Tingley D, Lipman PJ, Cho MH, Litonjua AA, Sparrow D, et al. Dissecting direct and indirect genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility. Hum Genet. 2013;132(4):431–41.
Article
PubMed Central
PubMed
Google Scholar
Cho MH, McDonald MN, Zhou X, Siedlinski M, Hersh CP, Demeo DL, et al. A genome-wide association identifies risk loci for severe chronic obstructive pulmonary disease. Lancet Respir. 2014;2:214–25.
Article
CAS
Google Scholar
Zhou X, Baron RM, Hardin M, Cho MH, Zielinski J, Hawrylkiewicz I, et al. Identification of a chronic obstructive pulmonary disease genetic determinant that regulates HHIP. Hum Mol Genet. 2012;21:1325–35.
Article
PubMed Central
CAS
PubMed
Google Scholar
Young RP, Whittington CF, Hopkins RJ, Hay BA, Epton MJ, Black PN, et al. Chr 4q31 locus in COPD is also associated with lung cancer. Eur Respir J. 2010;36:1375–82.
Article
CAS
PubMed
Google Scholar
Van Durme YM, Eijgelsheim M, Joos GF, Hofman A, Uitterlinden AG, Brusselle GG, et al. Hedgehog-interacting protein is a COPD susceptibility gene: the Rotterdam Study. Eur Respir J. 2010;36:89–95.
Article
PubMed
Google Scholar
Young RP, Hopkins RJ, Hay BA, Whittington CF, Epton MJ, Gamble GD. FAM13A locus in COPD is independently associated with lung cancer–evidence of a molecular genetic link between COPD and lung cancer. Appl Clin Genet. 2011;4:1–10.
PubMed Central
PubMed
Google Scholar
Manichaikul A, Hoffman EA, Smolonska J, Gao W, Cho MH, Baumhauer H, et al. Genome-wide study of percent emphysema on computed tomography in the general population. The multi-ethnic study of atherosclerosis lung/SNP Health Association Resource Study. Am J Respir Crit Care Med. 2014;189(4):408–18.
Article
PubMed Central
PubMed
Google Scholar
Kajiho H, Saito K, Tsujita K, Kontani K, Araki Y, Kurosu H, et al. RIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathway. J Cell Sci. 2003;116:4159–68.
Article
CAS
PubMed
Google Scholar
Saito K, Murai J, Kajiho H, Kontani K, Kurosu H, Katada T. A novel binding protein composed of homophilic tetramer exhibits unique properties for the small GTPase Rab5. J Biol Chem. 2002;277:3412–8.
Article
CAS
PubMed
Google Scholar
Zabetian CP, Anderson GM, Buxbaum SG, Elston RC, Ichinose H, Nagatsu T, et al. A quantitative-trait analysis of human plasma-dopamine beta-hydroxylase activity: evidence for a major functional polymorphism at the DBH locus. Am J Hum Genet. 2001;68:515–22.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang L, Zang W, Liu J, Xie D, Ji W, Pan Y, et al. Association of CYP2A6*4 with susceptibility of lung cancer: a meta-analysis. PLoS One. 2013;8(4):e59556.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cho MH, Castaldi PJ, Wan ES, Siedlinski M, Hersh CP, Demeo DL, et al. A genome-wide association study of COPD identifies a susceptibility locus on chr 19q13. Hum Mol Genet. 2012;21:947–57.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lutz SM, Hokanson JE, Lange C. An alternative hypothesis testing strategy for secondary phenotype data in case–control genetic association studies. Front Genet. 2014; (In Press) (doi:10.3389/fgene.2014.00188)
Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, et al. Genetic epidemiology of COPD (COPDGene) study design. COPD. 2010;7:32–43.
Article
PubMed Central
PubMed
Google Scholar
Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–38.
Article
CAS
PubMed
Google Scholar
Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet. 2012;44:955–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: sing sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol. 2010;834:816–34.
Article
Google Scholar
1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2010;491:56–65.
Google Scholar
Vestbo J, Anderson W, Coxson HO, Crim C, Dawber F, Edwards L, et al. Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE). Eur Respir J. 2008;31:869–73.
Article
CAS
PubMed
Google Scholar
Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): Identification of two major susceptibility loci. PLoS Genet. 2009;5(3):e1000421.
Article
PubMed Central
PubMed
Google Scholar
Cho MH, Boutaoui N, Klanderman BJ, Sylvia JS, Ziniti JP, Hersh CP, et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat Genet. 2010;42(3):200–1.
Article
PubMed Central
CAS
PubMed
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.
Article
PubMed Central
CAS
PubMed
Google Scholar
Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1.
Article
PubMed Central
CAS
PubMed
Google Scholar