Heit JA, Crusan DJ, Ashrani AA, Petterson TM, Bailey KR. Effect of a near-universal hospitalization-based prophylaxis regimen on annual number of venous thromboembolism events in the US. Blood. 2017;130(2):109–14.
Article
CAS
Google Scholar
Duffett L, Castellucci LA, Forgie MA. Pulmonary embolism: update on management and controversies. Bmj. 2020;370:m2177.
Article
Google Scholar
Javed QA, Sista AK. Endovascular therapy for acute severe pulmonary embolism. Int J Cardiovasc Imaging. 2019;35(8):1443–52.
Article
Google Scholar
Xia ZN, Xiao K, Zhu W, Feng B, Zhang BZ, Lin J, et al. Risk assessment and management of preoperative venous thromboembolism following femoral neck fracture. J Orthop Surg Res. 2018;13(1):291.
Article
Google Scholar
Schwerbel K, Kamitz A, Krahmer N, Hallahan N, Jähnert M, Gottmann P, et al. Immunity-related GTPase induces lipophagy to prevent excess hepatic lipid accumulation. J Hepatol. 2020;73(4):771–82.
Article
CAS
Google Scholar
Bourgognon JM, Steinert JR. The metabolome identity: basis for discovery of biomarkers in neurodegeneration. Neural Regen Res. 2019;14(3):387–90.
Article
CAS
Google Scholar
Tremblay BL, Guénard F, Lamarche B, Pérusse L, Vohl MC. Familial resemblances in human plasma metabolites are attributable to both genetic and common environmental effects. Nutr Res. 2019;61:22–30.
Article
CAS
Google Scholar
Zernia S, van der Heide NJ, Galenkamp NS, Gouridis G, Maglia G. Current blockades of proteins inside Nanopores for real-time metabolome analysis. ACS Nano. 2020;14(2):2296–307.
Article
CAS
Google Scholar
Liu L, Wen Y, Zhang L, Xu P, Liang X, Du Y, et al. Assessing the associations of blood metabolites with osteoporosis: a Mendelian randomization study. J Clin Endocrinol Metab. 2018;103(5):1850–5.
Article
Google Scholar
Schlosser P, Li Y, Sekula P, Raffler J, Grundner-Culemann F, Pietzner M, et al. Genetic studies of urinary metabolites illuminate mechanisms of detoxification and excretion in humans. Nat Genet. 2020;52(2):167–76.
Article
CAS
Google Scholar
Larsson SC, Burgess S, Michaëlsson K. Association of Genetic Variants Related to serum calcium levels with coronary artery disease and myocardial infarction. Jama. 2017;318(4):371–80.
Article
CAS
Google Scholar
Bujak R, García-Álvarez A, Rupérez FJ, Nuño-Ayala M, García A, Ruiz-Cabello J, et al. Metabolomics reveals metabolite changes in acute pulmonary embolism. J Proteome Res. 2014;13(2):805–16.
Article
CAS
Google Scholar
Zeleznik OA, Poole EM, Lindstrom S, Kraft P, Van Hylckama VA, Lasky-Su JA, et al. Metabolomic analysis of 92 pulmonary embolism patients from a nested case-control study identifies metabolites associated with adverse clinical outcomes. J Thromb Haemost. 2018;16(3):500–7.
Article
CAS
Google Scholar
Hu D, Cheng L, Jiang W. Fruit and vegetable consumption and the risk of postmenopausal osteoporosis: a meta-analysis of observational studies. Food Funct. 2018;9(5):2607–16.
Article
CAS
Google Scholar
Schwessinger R, Suciu MC, McGowan SJ, Telenius J, Taylor S, Higgs DR, et al. Sasquatch: predicting the impact of regulatory SNPs on transcription factor binding from cell- and tissue-specific DNase footprints. Genome Res. 2017;27(10):1730–42.
Article
CAS
Google Scholar
Treur JL, Taylor AE, Ware JJ, Nivard MG, Neale MC, McMahon G, et al. Smoking and caffeine consumption: a genetic analysis of their association. Addict Biol. 2017;22(4):1090–102.
Article
CAS
Google Scholar
Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47(3):291–5.
Article
CAS
Google Scholar
Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. Bmj. 2018;362:k601.
Article
Google Scholar
Zhu Z, Zheng Z, Zhang F, Wu Y, Trzaskowski M, Maier R, et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat Commun. 2018;9(1):224.
Article
Google Scholar
Zuber V, Colijn JM, Klaver C, Burgess S. Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization. Nat Commun. 2020;11(1):29.
Article
CAS
Google Scholar
Kappelmann N, Arloth J, Georgakis MK, Czamara D, Rost N, Ligthart S, et al. Dissecting the association between inflammation, metabolic dysregulation, and specific depressive symptoms: a genetic correlation and 2-sample Mendelian randomization study. JAMA Psychiatry. 2021;78(2):161–70.
Article
Google Scholar
Zeng L, Ntalla I, Kessler T, Kastrati A, Erdmann J, Group UKBCCCW, et al. Genetically modulated educational attainment and coronary disease risk. Eur Heart J. 2019;40(29):2413–20.
Article
Google Scholar
Canela-Xandri O, Rawlik K, Tenesa A. An atlas of genetic associations in UK biobank. Nat Genet. 2018;50(11):1593–9.
Article
CAS
Google Scholar
Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J, et al. An atlas of genetic influences on human blood metabolites. Nat Genet. 2014;46(6):543–50.
Article
CAS
Google Scholar
Alexander M, Curtis D. LD scores are associated with differences in allele frequencies between populations but LD score regression can still distinguish confounding from polygenicity. Ann Hum Genet. 2020;84(5):412–6.
Article
CAS
Google Scholar
Liu L, Wang S, Wen Y, Li P, Cheng S, Ma M, et al. Assessing the genetic relationships between osteoarthritis and human plasma proteins: a large scale genetic correlation scan. Ann Transl Med. 2020;8(11):677.
Article
CAS
Google Scholar
Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40(3):755–64.
Article
Google Scholar
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through egger regression. Int J Epidemiol. 2015;44(2):512–25.
Article
Google Scholar
Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.
Article
Google Scholar
Skrivankova VW, Richmond RC, Woolf BAR, Davies NM, Swanson SA, VanderWeele TJ, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ (Clinical research ed). 2021;375:n2233.
Google Scholar
Liu XX, Zhang B, Ai LZ. Advances in the microbial synthesis of 5-Hydroxytryptophan. Front Bioeng Biotechnol. 2021;9:624503.
Article
Google Scholar
Shirama K, Takeo Y, Shimizu K, Maekawa K. Inhibitory effect of 5-hydroxytryptophane on the induction of persistent estrus by androgen in the rat. Endocrinol Jpn. 1975;22(6):575–9.
Article
CAS
Google Scholar
Shi Q, Xue C, Yuan X, He Y, Yu Z. Gene signatures and prognostic values of m1A-related regulatory genes in hepatocellular carcinoma. Sci Rep. 2020;10(1):15083.
Article
CAS
Google Scholar
Robinson BR, Houng AK, Reed GL. Catalytic life of activated factor XIII in thrombi. Implications for fibrinolytic resistance and thrombus aging. Circulation. 2000;102(10):1151–7.
Article
CAS
Google Scholar
Swietlik EM, Ghataorhe P, Zalewska KI, Wharton J, Howard LS, Taboada D, et al. Plasma metabolomics exhibit response to therapy in chronic thromboembolic pulmonary hypertension. Eur Respir J. 2021;57(4):1–2.
Medehouenou TCM, Roy C, Tremblay PY, St-Jean A, Meziou S, Muckle G, et al. Metabolic features of adiposity and glucose homoeostasis among school-aged inuit children from Nunavik (northern Quebec, Canada). Int J Circumpolar Health. 2021;80(1):1858605.
Article
Google Scholar
Gautam A, Muhie S, Chakraborty N, Hoke A, Donohue D, Miller SA, et al. Metabolomic analyses reveal lipid abnormalities and hepatic dysfunction in non-human primate model for Yersinia pestis. Metabolomics. 2018;15(1):2.
Article
Google Scholar