Genome. National Library of Medicine (US), National Center for Biotechnology Information, Bethesda. 2004 https://www.ncbi.nlm.nih.gov/genome/. Accessed 11 Feb 2022.
Jeon HH, Kim KH, Chun BH, Ryu BH, Han NS, Jeon CO. A proposal of Leuconostoc mesenteroides subsp. jonggajibkimchii subsp. nov. and reclassification of Leuconostoc mesenteroides subsp suionicum (Gu et al., 2012) as Leuconostoc suionicum sp. nov. based on complete genome sequences. Int J Syst Evol Microbiol. 2017;67:2225–30.
Article
CAS
PubMed
Google Scholar
Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, Huntemann M, Varghese N, White JR, Seshadri R, et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019;47:D666–77.
Article
CAS
PubMed
Google Scholar
Frantzen CA, Kot W, Pedersen TB, Ardö YM, Broadbent JR, Neve H, Hansen LH, Dal Bello F, Østlie HM, Kleppen HP, et al. Genomic Characterization of Dairy Associated Leuconostoc Species and Diversity of Leuconostocs in Undefined Mixed Mesophilic Starter Cultures. Front Microbiol. 2017;8:132.
Article
PubMed
PubMed Central
Google Scholar
Holland R, Liu S-Q. Lactic Acid Bacteria | Leuconostoc spp. In: Fuquay JW, editor. Encyclopedia of Dairy Sciences (Second Edition). Second Edition. San Diego: Academic Press; 2011. p. 138–42.
Kim S-A, Bae J-H, Seong H, Han NS. Development of Leuconostoc lactis–Specific Quantitative PCR and its Application for Identification and Enumeration in Fermented Foods. Food Anal Methods. 2020;13:992–9.
Article
Google Scholar
Cicotello J, Wolf IV, D’Angelo L, Guglielmotti DM, Quiberoni A, Suárez VB. Response of Leuconostoc strains against technological stress factors: Growth performance and volatile profiles. Food Microbiol. 2018;73:362–70.
Article
PubMed
Google Scholar
Cogan TM, Fitzgerald RJ, Doonan S. Acetolactate synthase of Leuconostoc lactis and its regulation of acetoin production. J Dairy Res. 1984;51:597–604.
Article
CAS
Google Scholar
Saravanan C, Shetty PKH. Isolation and characterization of exopolysaccharide from Leuconostoc lactis KC117496 isolated from idli batter. Int J Biol Macromol. 2016;90:100–6.
Article
CAS
PubMed
Google Scholar
Axelsson L. Lactic Acid Bacteria: Classification and Physiology. In: Lactic acid bacteria: microbiology and functional aspects. 2nd edition. New York: Marcel Dekker; 1998.
Axelsson L. Lactic Acid Bacteria: Classification and Physiology. In: Salminen S, von Wright A, Ouwehand A, editors. Lactic Acid Bacteria. 3rd edition. Boca Raton: CRC Press; 2004.
Heinl S, Grabherr R. Systems biology of robustness and flexibility: Lactobacillus buchneri-A show case. J Biotechnol. 2017;257:61–9.
Article
CAS
PubMed
Google Scholar
Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, et al. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A. 2006;103:15611–6.
Article
PubMed
PubMed Central
Google Scholar
Nethery MA, Henriksen ED, Daughtry KV, Johanningsmeier SD, Barrangou R. Comparative genomics of eight Lactobacillus buchneri strains isolated from food spoilage. BMC Genomics. 2019;20:902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Copley SD. Toward a Systems Biology Perspective on Enzyme Evolution. J Biol Chem. 2012;287:3–10.
Article
CAS
PubMed
Google Scholar
Reams AB, Roth JR. Mechanisms of Gene Duplication and Amplification. Cold Spring Harb Perspect Biol. 2015;7:a016592.
Article
PubMed
PubMed Central
CAS
Google Scholar
Candeliere F, Raimondi S, Spampinato G, Tay MYF, Amaretti A, Schlundt J, Rossi M. Comparative Genomics of Leuconostoc carnosum. Front Microbiol. 2021;11:605127.
Article
PubMed
PubMed Central
Google Scholar
Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2016;44:D67–72.
Article
CAS
PubMed
Google Scholar
Daughtry KV, Johanningsmeier SD, Sanozky-Dawes R, Klaenhammer TR, Barrangou R. Phenotypic and genotypic diversity of Lactobacillus buchneri strains isolated from spoiled, fermented cucumber. Int J Food Microbiol. 2018;280:46–56.
Article
CAS
PubMed
Google Scholar
R Core Team: R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2021.
Google Scholar
Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.
Book
Google Scholar
Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33:2938–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Broadbent JR, Neeno-Eckwall EC, Stahl B, Tandee K, Cai H, Morovic W, Horvath P, Heidenreich J, Perna NT, Barrangou R, et al. Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC Genomics. 2012;13:533.
Article
CAS
PubMed
PubMed Central
Google Scholar
Obst M, Meding ER, Vogel RF, Hammes WP. Two genes encoding the ß-galactosidase of Lactobacillus sake. Microbiology. 1995;141:3059–66.
Article
CAS
PubMed
Google Scholar
Richard C, Lewis ED, Zhao Y-Y, Justice, Asomaning J, Jacobs RL, Field CJ, Curtis JM. Measurement of the total choline content in 48 commercial dairy products or dairy alternatives. J Food Compost Anal. 2016;45:1-8. https://doi.org/10.1016/j.jfca.2015.09.009.
Kappes RM, Kempf B, Kneip S, Boch J, Gade J, Meier-Wagner J, Bremer E. Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol Microbiol. 1999;32:203–16.
Article
CAS
PubMed
Google Scholar
Broadbent JR, Hughes JE, Welker DL, Tompkins TA, Steele JL. Complete Genome Sequence for Lactobacillus helveticus CNRZ 32, an Industrial Cheese Starter and Cheese Flavor Adjunct. Genome Announc. 2013;1:e00590-e613.
Article
PubMed
PubMed Central
Google Scholar
Dimitrov Z, Michaylova M, Mincova S. Characterization of Lactobacillus helveticus strains isolated from Bulgarian yoghurt, cheese, plants and human faecal samples by sodium dodecilsulfate polyacrylamide gel electrophoresis of cell-wall proteins, ribotyping and pulsed field gel fingerprinting. Int Dairy J. 2005;15:998–1005.
Article
CAS
Google Scholar
Martinez B, Suarez JE, Rodriguez A. Lactococcin 972: a homodimeric lactococcal bacteriocin whose primary target is not the plasma membrane. Microbiology. 1996;142:2393–8.
Article
CAS
PubMed
Google Scholar
Zendo T, Koga S, Shigeri Y, Nakayama J, Sonomoto K. Lactococcin Q, a Novel Two-Peptide Bacteriocin Produced by Lactococcus lactis QU 4. Appl Environ Microbiol. 2006;72:3383–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Ren M, Duo L, Li J, Wang S, Sun Y, Li M, Ren W, Hou Q, Yu J, et al. Fermentation Characteristics of Lactococcus lactis subsp. lactis Isolated From Naturally Fermented Dairy Products and Screening of Potential Starter Isolates. Front Microbiol. 2020;11:1794.
Article
PubMed
PubMed Central
Google Scholar
Chaucheyras-Durand F, Durand H. Probiotics in animal nutrition and health. Benef Microbes. 2010;1:3–9.
Article
CAS
PubMed
Google Scholar
Donnelly CW, editor. Cheese and microbes. Washington, DC: ASM Press; 2014.
Brandt K, Barrangou R. Using glycolysis enzyme sequences to inform Lactobacillus phylogeny. Microb Genom. 2018;4(6):e000187.
PubMed Central
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darling AE, Mau B, Perna NT. progressiveMauve: Multiple Genome Alignment with Gene Gain. Loss and Rearrangement PLoS One. 2010;5:e11147.
Article
PubMed
CAS
Google Scholar
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
Article
CAS
PubMed
Google Scholar
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:3691–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10:2182.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol. 2016;66:1100–3.
Article
CAS
PubMed
Google Scholar
Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12:402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. Nucleic Acids Res. 2018;46:W200–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliveira FS, da Silva Rodrigues R, de Carvalho AF, Nero LA. Genomic Analyses of Pediococcus pentosaceus ST65ACC, a Bacteriocinogenic Strain Isolated from Artisanal Raw-Milk Cheese. Probiotics & Antimicro Prot. 2022. https://doi.org/10.1007/s12602-021-09894-1.
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182-185.
Article
PubMed
PubMed Central
Google Scholar
Kanehisa M, Sato Y, Kawashima M. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci. 2022;31:47–53.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29:28–35.
Article
CAS
PubMed
Google Scholar
Nethery MA, Barrangou R. CRISPR Visualizer: rapid identification and visualization of CRISPR loci via an automated high-throughput processing pipeline. RNA Biol. 2019;16:577–84.
Article
PubMed
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.
Article
PubMed
PubMed Central
CAS
Google Scholar
Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58:3895–903.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 2018;46:W278–81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
PubMed
Google Scholar
Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: A Sequence Logo Generator. Genome Res. 2004;14:1188–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucl Acids Res. 1990;18:6097–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32-36.
Article
CAS
PubMed
Google Scholar
Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen A-LV, Cheng AA, Liu S, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;2020(48):D517–25.
Google Scholar