Fernandez X, Monin G, Talmant A, Mourot J, Lebret B. Influence of intramuscular fat content on the quality of pig meat - 1. Composition of the lipid fraction and sensory characteristics of m. longissimus lumborum. Meat Sci. 1999;53(1):59–65.
Article
CAS
PubMed
Google Scholar
Hocquette JF, Gondret F, Baeza E, Medale F, Jurie C, Pethick DW. Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal. 2010;4(2):303–19.
Article
CAS
PubMed
Google Scholar
Davoli R, Luise D, Mingazzini V, Zambonelli P, Braglia S, Serra A, Russo V. Genome-wide study on intramuscular fat in Italian large white pig breed using the PorcineSNP60 BeadChip. J Anim Breed Genet. 2016;133(4):277–82.
Article
CAS
PubMed
Google Scholar
Puig-Oliveras A, Revilla M, Castello A, Fernandez AI, Folch JM, Ballester M. Expression-based GWAS identifies variants, gene interactions and key regulators affecting intramuscular fatty acid content and composition in porcine meat. Sci Rep. 2016;6:31803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Munoz M, Rodriguez MC, Alves E, Folch JM, Ibanez-Escriche N, Silio L, Fernandez AI. Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data. BMC Genomics. 2013;14:845.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Ning C, Wang C, Guo J, Wang J, Wu Y. Genome-wide association study for intramuscular fat content in Chinese Lulai black pigs. Asian-Australas J Anim Sci. 2019;32(5):607–13.
Ros-Freixedes R, Gol S, Pena RN, Tor M, Ibanez-Escriche N, Dekkers JC, Estany J. Genome-wide association study singles out SCD and LEPR as the two Main loci influencing intramuscular fat content and fatty acid composition in Duroc pigs. PLoS One. 2016;11(3):e152496.
Article
CAS
Google Scholar
Won S, Jung J, Park E, Kim H. Identification of genes related to intramuscular fat content of pigs using genome-wide association study. Asian-Australas J Anim Sci. 2018;31(2):157–62.
Article
CAS
PubMed
Google Scholar
Li W, Yang Y, Liu Y, Liu S, Li X, Wang Y, Zhang Y, Tang H, Zhou R, Li K. Integrated analysis of mRNA and miRNA expression profiles in livers of Yimeng black pigs with extreme phenotypes for backfat thickness. Oncotarget. 2017;8(70):114787–800.
PubMed
PubMed Central
Google Scholar
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.
Article
CAS
PubMed
Google Scholar
He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31.
Article
CAS
PubMed
Google Scholar
Tufekci KU, Meuwissen RL, Genc S. The role of microRNAs in biological processes. Methods Mol Biol. 2014;1107:15–31.
Article
CAS
PubMed
Google Scholar
Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol. 2014;51(4):759–74.
Article
CAS
PubMed
Google Scholar
Novak J, Bienertova-Vasku J, Kara T, Novak M. MicroRNAs involved in the lipid metabolism and their possible implications for atherosclerosis development and treatment. Mediat Inflamm. 2014;2014:275867.
Article
CAS
Google Scholar
Di Leva G, Briskin D, Croce CM. MicroRNA in cancer: new hopes for antineoplastic chemotherapy. Ups J Med Sci. 2012;117(2):202–16.
Article
PubMed
PubMed Central
Google Scholar
Ning X, Liu S, Qiu Y, Li G, Li Y, Li M, Yang G. Expression Profiles and Biological Roles of miR-196a in Swine. Genes (Basel). 2016;7(2):5.
Yang W, Tang K, Wang Y, Zan L. MiR-27a-5p increases steer fat deposition partly by targeting calcium-sensing receptor (CASR). Sci Rep. 2018;8(1):3012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Guan X, Guo F, Zhou J, Chang A, Sun B, Cai Y, Ma Z, Dai C, Li X, et al. miR-30e reciprocally regulates the differentiation of adipocytes and osteoblasts by directly targeting low-density lipoprotein receptor-related protein 6. Cell Death Dis. 2013;4:e845.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S, Martindale JL, Hutchison ER, Kim HH, Marasa BS, et al. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol. 2011;31(4):626–38.
Article
CAS
PubMed
Google Scholar
Chen Y, Siegel F, Kipschull S, Haas B, Frohlich H, Meister G, Pfeifer A. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat Commun. 2013;4:1769.
Article
CAS
PubMed
Google Scholar
Wen D, Peng Y, Lin F, Singh RK, Mahato RI. Micellar delivery of miR-34a modulator Rubone and paclitaxel in resistant prostate Cancer. Cancer Res. 2017;77(12):3244–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ito Y, Inoue A, Seers T, Hato Y, Igarashi A, Toyama T, Taganov KD, Boldin MP, Asahara H. Identification of targets of tumor suppressor microRNA-34a using a reporter library system. Proc Natl Acad Sci U S A. 2017;114(15):3927–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y, Liu C, Liu X, Tang DG, Wang J. The microRNA miR-34a inhibits non-small cell lung cancer (NSCLC) growth and the CD44hi stem-like NSCLC cells. PLoS One. 2014;9(3):e90022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adams BD, Parsons C, Slack FJ. The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas. Expert Opin Ther Targets. 2016;20(6):737–53.
Article
CAS
PubMed
Google Scholar
Saito Y, Nakaoka T, Saito H. microRNA-34a as a therapeutic agent against human Cancer. J Clin Med. 2015;4(11):1951–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L. Regulatory mechanisms and clinical perspectives of miR-34a in cancer. J Cancer Res Ther. 2014;10(4):805–10.
Article
PubMed
Google Scholar
Li XJ, Ren ZJ, Tang JH. MicroRNA-34a: a potential therapeutic target in human cancer. Cell Death Dis. 2014;5:e1327.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maroni P, Puglisi R, Mattia G, Care A, Matteucci E, Bendinelli P, Desiderio MA. In bone metastasis miR-34a-5p absence inversely correlates with met expression, while met oncogene is unaffected by miR-34a-5p in non-metastatic and metastatic breast carcinomas. Carcinogenesis. 2017;38(5):492–503.
Article
CAS
PubMed
Google Scholar
Xiang ZL, Zhao XM, Zhang L, Yang P, Fan J, Tang ZY, Zeng ZC. MicroRNA-34a expression levels in serum and intratumoral tissue can predict bone metastasis in patients with hepatocellular carcinoma. Oncotarget. 2016;7(52):87246–56.
Article
PubMed
PubMed Central
Google Scholar
Ghandadi M, Sahebkar A. MicroRNA-34a and its target genes: key factors in cancer multidrug resistance. Curr Pharm Des. 2016;22(7):933–9.
Article
CAS
PubMed
Google Scholar
Rapti SM, Kontos CK, Christodoulou S, Papadopoulos IN, Scorilas A. miR-34a overexpression predicts poor prognostic outcome in colorectal adenocarcinoma, independently of clinicopathological factors with established prognostic value. Clin Biochem. 2017;50(16–17):918–24.
Article
CAS
PubMed
Google Scholar
Imani S, Zhang X, Hosseinifard H, Fu S, Fu J. The diagnostic role of microRNA-34a in breast cancer: a systematic review and meta-analysis. Oncotarget. 2017;8(14):23177–87.
Article
PubMed
PubMed Central
Google Scholar
Chen AH, Qin YE, Tang WF, Tao J, Song HM, Zuo M. MiR-34a and miR-206 act as novel prognostic and therapy biomarkers in cervical cancer. Cancer Cell Int. 2017;17:63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao X, Sun Y, Ding Y, Zhang J, Li K. miR-34a inhibitor may effectively protect against Sevoflurane-induced hippocampal apoptosis through the Wnt/beta-catenin pathway by targeting Wnt1. Yonsei Med J. 2018;59(10):1205–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torres JL, Novo-Veleiro I, Manzanedo L, Alvela-Suarez L, Macias R, Laso FJ, Marcos M. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease. World J Gastroenterol. 2018;24(36):4104–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tao YF, Qiang J, Bao JW, Chen DJ, Yin GJ, Xu P, Zhu HJ. Changes in physiological parameters, lipid metabolism, and expression of MicroRNAs in genetically improved farmed Tilapia (Oreochromis niloticus) with fatty liver induced by a high-fat diet. Front Physiol. 2018;9:1521.
Article
PubMed
PubMed Central
Google Scholar
Xu Y, Du J, Zhang P, Zhao X, Li Q, Jiang A, Jiang D, Tang G, Jiang Y, Wang J, et al. MicroRNA-125a-5p Mediates 3T3-L1 Preadipocyte Proliferation and Differentiation. Molecules. 2018;23(2):317.
Kim C, Lee H, Cho YM, Kwon OJ, Kim W, Lee EK. TNFalpha-induced miR-130 resulted in adipocyte dysfunction during obesity-related inflammation. FEBS Lett. 2013;S0014-5793(13):00775–8.
Mashek DG, Li LO, Coleman RA. Long-chain acyl-CoA synthetases and fatty acid channeling. Future Lipidol. 2007;2(4):465–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li LO, Mashek DG, An J, Doughman SD, Newgard CB, Coleman RA. Overexpression of rat long chain acyl-coa synthetase 1 alters fatty acid metabolism in rat primary hepatocytes. J Biol Chem. 2006;281(48):37246–55.
Article
CAS
PubMed
Google Scholar
Xu X, Gopalacharyulu P, Seppanen-Laakso T, Ruskeepaa AL, Aye CC, Carson BP, Mora S, Oresic M, Teleman AA. Insulin signaling regulates fatty acid catabolism at the level of CoA activation. PLoS Genet. 2012;8(1):e1002478.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duarte A, Poderoso C, Cooke M, Soria G, Cornejo MF, Gottifredi V, Podesta EJ. Mitochondrial fusion is essential for steroid biosynthesis. PLoS One. 2012;7(9):e45829.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maloberti PM, Duarte AB, Orlando UD, Pasqualini ME, Solano AR, Lopez-Otin C, Podesta EJ. Functional interaction between acyl-CoA synthetase 4, lipooxygenases and cyclooxygenase-2 in the aggressive phenotype of breast cancer cells. PLoS One. 2010;5(11):e15540.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuwata H, Hara S. Inhibition of long-chain acyl-CoA synthetase 4 facilitates production of 5, 11-dihydroxyeicosatetraenoic acid via the cyclooxygenase-2 pathway. Biochem Biophys Res Commun. 2015;465(3):528–33.
Article
CAS
PubMed
Google Scholar
Kang MJ, Fujino T, Sasano H, Minekura H, Yabuki N, Nagura H, Iijima H, Yamamoto TT. A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis. Proc Natl Acad Sci U S A. 1997;94(7):2880–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klett EL, Chen S, Edin ML, Li LO, Ilkayeva O, Zeldin DC, Newgard CB, Coleman RA. Diminished acyl-CoA synthetase isoform 4 activity in INS 832/13 cells reduces cellular epoxyeicosatrienoic acid levels and results in impaired glucose-stimulated insulin secretion. J Biol Chem. 2013;288(30):21618–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mercade A, Estelle J, Perez-Enciso M, Varona L, Silio L, Noguera JL, Sanchez A, Folch JM. Characterization of the porcine acyl-CoA synthetase long-chain 4 gene and its association with growth and meat quality traits. Anim Genet. 2006;37(3):219–24.
Article
CAS
PubMed
Google Scholar
Rusc A, Sieczkowska H, Krzecio E, Antosik K, Zybert A, Kocwin-Podsiadla M, Kaminski S. The association between acyl-CoA synthetase (ACSL4) polymorphism and intramuscular fat content in (landrace x Yorkshire) x Duroc pigs. Meat Sci. 2011;89(4):440–3.
Article
CAS
PubMed
Google Scholar
Chen JN, Jiang YZ, Cen WM, Xing SH, Zhu L, Tang GQ, Li MZ, Jiang AA, Lou PE, Wen AX, et al. Distribution of H-FABP and ACSL4 gene polymorphisms and their associations with intramuscular fat content and backfat thickness in different pig populations. Genet Mol Res. 2014;13(3):6759–72.
Article
CAS
PubMed
Google Scholar
Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev. 1998;78(3):783–809.
Article
CAS
PubMed
Google Scholar
Morrison RF, Farmer SR. Hormonal signaling and transcriptional control of adipocyte differentiation. J Nutr. 2000;130(12):3116S–21S.
Article
CAS
PubMed
Google Scholar
Lasa A, Churruca I, Eseberri I, Andres-Lacueva C, Portillo MP. Delipidating effect of resveratrol metabolites in 3T3-L1 adipocytes. Mol Nutr Food Res. 2012;56(10):1559–68.
Article
CAS
PubMed
Google Scholar
Sun YM, Qin J, Liu SG, Cai R, Chen XC, Wang XM, Pang WJ. PDGFRalpha Regulated by miR-34a and FoxO1 Promotes Adipogenesis in Porcine Intramuscular Preadipocytes through Erk Signaling Pathway. Int J Mol Sci. 2017;18(11):2424.
Wen F, An C, Wu X, Yang Y, Xu J, Liu Y, Wang C, Nie L, Fang H, Yang Z. MiR-34a regulates mitochondrial content and fat ectopic deposition induced by resistin through the AMPK/PPARalpha pathway in HepG2 cells. Int J Biochem Cell Biol. 2018;94:133–45.
Article
CAS
PubMed
Google Scholar
Piletič K, Kunej T. Minimal standards for reporting microRNA: target interactions. Omics. 2017;21(4):197–206.
Article
CAS
PubMed
Google Scholar
Agarwal V, Bell GW, Nam J, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:e05005.
Article
PubMed Central
Google Scholar
Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019;20(1):18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA. 2004;10:1507–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilkinson L. ggplot2: elegant graphics for data analysis by H. WICKHAM. Biometrics. 2011;67(2):678–9.
Article
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar