Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. PNAS. 2009;106(23):9362–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shastry BS. SNPs: impact on gene function and phenotype. Methods Mol Biol. 2009;578:3–22. https://doi.org/10.1007/978-1-60327-411-1_1 Review.
Article
CAS
PubMed
Google Scholar
Ernst J, Kellis M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol. 2010;28(8):817–25. https://doi.org/10.1038/nbt.1662.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 2011;473(7345):43–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
ENCODE Project Consortium, Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.
Article
Google Scholar
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289–93. https://doi.org/10.1126/science.1181369.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thibodeau A, Uyar A, Khetan S, Stitzel ML, Ucar D. A neural network based model effectively predicts enhancers from clinical ATAC-seq samples. Sci Rep. 2018;8(1):16048. https://doi.org/10.1038/s41598-018-34420-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melnikov A, Murugan A, Zhang X, Tesileanu T, Wang L, et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat Biotechnol. 2012;30(3):271–7. https://doi.org/10.1038/nbt.2137.
Article
CAS
PubMed
PubMed Central
Google Scholar
Visel A, Minovitsky S, Dubchak I, Pennacchio LA. VISTA enhancer browser—a database of tissue-specific human enhancers. Nucleic Acids Res. 2007;35(Database issue):D88–92.
Article
CAS
PubMed
Google Scholar
Coppola CJ, Ramaker R, Mendenhall EM. Identification and function of enhancers in the human genome. Hum Mol Genet. 2016;25(R2):R190–7.
Article
CAS
PubMed
Google Scholar
Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, Rosen N, Kohn A, Twik M, Safran M, Lancet D, Cohen D. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford). 2017;2017. https://doi.org/10.1093/database/bax028.
Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507(7493):455–61. https://doi.org/10.1038/nature12787.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zerbino DR, Wilder SP, Johnson N, Juettemann T, Flicek PR. The ensemble regulatory build. Genome Biol. 2015;16:56. https://doi.org/10.1186/s13059-015-0621-5.
Article
PubMed
PubMed Central
Google Scholar
Khan A, Zhang X. dbSUPER: a database of super-enhancers in mouse and human genome. Nucleic Acids Res. 2016;44(D1):D164–71. https://doi.org/10.1093/nar/gkv1002.
Article
CAS
PubMed
Google Scholar
Dreos R, Ambrosini G, Périer RC, Bucher P. The eukaryotic promoter database: expansion of EPDnew and new promoter analysis tools. Nucleic Acids Res. 2015;43(Database issue):D92–6. https://doi.org/10.1093/nar/gku1111.
Article
CAS
PubMed
Google Scholar
Dimitrieva S, Bucher P. UCNEbase--a database of ultraconserved non-coding elements and genomic regulatory blocks. Nucleic Acids Res. 2013;41(Database issue):D101–9. https://doi.org/10.1093/nar/gks1092.
Article
CAS
PubMed
Google Scholar
GTEx Consortium. Human genomics. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348(6235):648–60. https://doi.org/10.1126/science.1262110.
Article
CAS
Google Scholar
Kumasaka N, Knights AJ, Gaffney DJ. High-resolution genetic mapping of putative causal interactions between regions of open chromatin. Nat Genet. 2019;51(1):128–37. https://doi.org/10.1038/s41588-018-0278-6.
Article
CAS
PubMed
Google Scholar
Osborne CS, Mifsud B. Capturing genomic relationships that matter. Chromosom Res. 2017;25(1):15–24. https://doi.org/10.1007/s10577-016-9546-4.
Article
CAS
Google Scholar
Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gómez-Marín C, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507(7492):371–5. https://doi.org/10.1038/nature13138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramdas WD, van Koolwijk LM, Ikram MK, Jansonius NM, de Jong PT, Bergen AA, Isaacs A, Amin N, Aulchenko YS, Wolfs RC, Hofman A, Rivadeneira F, Oostra BA, Uitterlinden AG, Hysi P, Hammond CJ, Lemij HG, Vingerling JR, Klaver CC, van Duijn CM. A genome-wide association study of optic disc parameters. PLoS Genet. 2010;6(6):e1000978. https://doi.org/10.1371/journal.pgen.1000978.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khor CC, Ramdas WD, Vithana EN, Cornes BK, Sim X, Tay WT, Saw SM, Zheng Y, Lavanya R, Wu R, Wang JJ, Mitchell P, Uitterlinden AG, Rivadeneira F, Teo YY, Chia KS, Seielstad M, Hibberd M, Vingerling JR, Klaver CC, Jansonius NM, Tai ES, Wong TY, van Duijn CM, Aung T. Genome-wide association studies in Asians confirm the involvement of ATOH7 and TGFBR3, and further identify CARD10 as a novel locus influencing optic disc area. Hum Mol Genet. 2011;20(9):1864–72. https://doi.org/10.1093/hmg/ddr060.
Article
CAS
PubMed
Google Scholar
Springelkamp H, Mishra A, Hysi PG, Gharahkhani P, Höhn R, Khor CC, et al. Meta-analysis of genome-wide association studies identifies novel loci associated with optic disc morphology. Genet Epidemiol. 2015;39(3):207–16. https://doi.org/10.1002/gepi.21886.
Article
PubMed
PubMed Central
Google Scholar
Springelkamp H, Iglesias AI, Mishra A, Höhn R, Wojciechowski R, Khawaja AP, et al. New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics. Hum Mol Genet. 2017;26(2):438–53. https://doi.org/10.1093/hmg/ddw399.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramdas WD, van Koolwijk LM, Cree AJ, Janssens AC, Amin N, de Jong PT, Wolfs RC, Gibson J, Kirwan JF, Hofman A, Rivadeneira F, Oostra BA, Uitterlinden AG, Ennis S, Lotery AJ, Lemij HG, Klaver CC, Vingerling JR, Jansonius NM, van Duijn CM. Clinical implications of old and new genes for open-angle glaucoma. Ophthalmology. 2011;118(12):2389–97. https://doi.org/10.1016/j.ophtha.2011.05.040.
Article
PubMed
Google Scholar
Jadhav U, Cavazza A, Banerjee KK, Xie H, O'Neill NK, Saenz-Vash V, Herbert Z, Madha S, Orkin SH, Zhai H, Shivdasani RA. Extensive recovery of embryonic enhancer and gene memory stored in hypomethylated enhancer DNA. Mol Cell. 2019;74(3):542–554.e5. https://doi.org/10.1016/j.molcel.2019.02.024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilks CB, Bear SE, Grimes HL, Tsichlis PN. Progression of interleukin-2 (IL-2)-dependent rat T cell lymphoma lines to IL-2-independent growth following activation of a gene (Gfi-1) encoding a novel zinc finger protein. Mol Cell Biol. 1993;13(3):1759–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilks CB, Porter SD, Barker C, Tsichlis PN, Gout PW. Prolactin (PRL)-dependent expression of a zinc finger protein-encoding gene, Gfi-1, in Nb2 lymphoma cells: constitutive expression in autonomous sublines. Endocrinology. 1995;136(4):1805–8.
Article
CAS
PubMed
Google Scholar
Wallis D, Hamblen M, Zhou Y, Venken KJ, Schumacher A, Grimes HL, Zoghbi HY, Orkin SH, Bellen HJ. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development. 2003;130(1):221–32.
Article
CAS
PubMed
Google Scholar
Sapkota D, Chintala H, Wu F, Fliesler SJ, Hu Z, Mu X. Onecut1 and Onecut2 redundantly regulate early retinal cell fates during development. Proc Natl Acad Sci U S A. 2014;111(39):E4086–95. https://doi.org/10.1073/pnas.1405354111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson NK, Timms RT, Kinston SJ, Cheng YH, Oram SH, Landry JR, Mullender J, Ottersbach K, Gottgens B. Gfi1 expression is controlled by five distinct regulatory regions spread over 100 kilobases, with Scl/Tal1, Gata2, PU.1, Erg, Meis1, and Runx1 acting as upstream regulators in early hematopoietic cells. Mol Cell Biol. 2010;30(15):3853–63. https://doi.org/10.1128/MCB.00032-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bertolino E, Reinitz J, Manu. The analysis of novel distal Cebpa enhancers and silencers using a transcriptional model reveals the complex regulatory logic of hematopoietic lineage specification. Dev Biol. 2016;413(1):128–44. https://doi.org/10.1016/j.ydbio.2016.02.030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ng FS, Calero-Nieto FJ, Göttgens B. Shared transcription factors contribute to distinct cell fates. Transcription. 2014;5(5):e978173. https://doi.org/10.4161/21541264.2014.978173.
Article
PubMed
Google Scholar
Erwin GD, Oksenberg N, Truty RM, Kostka D, Murphy KK, Ahituv N, Pollard KS, Capra JA. Integrating diverse datasets improves developmental enhancer prediction. PLoS Comput Biol. 2014;10(6):e1003677. https://doi.org/10.1371/journal.pcbi.1003677.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge SX. Exploratory bioinformatics investigation reveals importance of “junk” DNA in early embryo development. BMC Genomics. 2017;18(1):200. https://doi.org/10.1186/s12864-017-3566-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Simonti CN, Capra JA. Genome-wide maps of distal gene regulatory enhancers active in the human placenta. PLoS One. 2018;13(12):e0209611. https://doi.org/10.1371/journal.pone.0209611 eCollection 2018.
Article
PubMed
PubMed Central
Google Scholar
Polak P, Domany E. Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes. BMC Genomics. 2006;7:133.
Article
PubMed
PubMed Central
Google Scholar
Kulakovskiy IV, Vorontsov IE, Yevshin IS, Sharipov RN, Fedorova AD, Rumynskiy EI, Medvedeva YA, Magana-Mora A, Bajic VB, Papatsenko DA, Kolpakov FA, Makeev VJ. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res. 2018;46(D1):D252–9. https://doi.org/10.1093/nar/gkx1106.
Article
CAS
PubMed
Google Scholar
Santolini M, Mora T, Hakim V. A general pairwise interaction model provides an accurate description of in vivo transcription factor binding sites. PLoS One. 2014;9(6):e99015. https://doi.org/10.1371/journal.pone.0099015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lis M, Walther D. The orientation of transcription factor binding site motifs in gene promoter regions: does it matter? BMC Genomics. 2016;17:185. https://doi.org/10.1186/s12864-016-2549-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cournac A, Koszul R, Mozziconacci J. The 3D folding of metazoan genomes correlates with the association of similar repetitive elements. Nucleic Acids Res. 2016;44(1):245–55. https://doi.org/10.1093/nar/gkv1292.
Article
CAS
PubMed
Google Scholar
Gu Z, Jin K, Crabbe MJC, Zhang Y, Liu X, Huang Y, Hua M, Nan P, Zhang Z, Zhong Y. Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome. Protein Cell. 2016;4:250–66. https://doi.org/10.1007/s13238-015-0240-7.
Article
CAS
Google Scholar
Ma XY, Wang JH, Wang JL, Ma CX, Wang XC, Liu FS. Malat1 as an evolutionarily conserved lncRNA, plays a positive role in regulating proliferation and maintaining undifferentiated status of early-stage hematopoietic cells. BMC Genomics. 2015;16:676. https://doi.org/10.1186/s12864-015-1881-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vankelecom H, Gremeaux L. Stem cells in the pituitary gland: a burgeoning field. Gen Comp Endocrinol. 2010;166(3):478–88. https://doi.org/10.1016/j.ygcen.2009.11.007.
Article
CAS
PubMed
Google Scholar
Camper SA. Beta-catenin stimulates pituitary stem cells to form aggressive tumors. Proc Natl Acad Sci U S A. 2011;108(28):11303–4. https://doi.org/10.1073/pnas.1108275108.
Article
PubMed
PubMed Central
Google Scholar
1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65.
Article
Google Scholar
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. https://doi.org/10.1186/s13742-015-0047-8.
Article
CAS
PubMed
PubMed Central
Google Scholar