Meuwissen T, Goddard M. Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics. 2010;185(2):623–31.
Article
PubMed Central
CAS
PubMed
Google Scholar
Spencer CCA, Su Z, Donnelly P, Marchini J. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet. 2009;5(5):e1000477.
Article
PubMed Central
PubMed
Google Scholar
Druet T, Schrooten C, de Roos AP. Imputation of genotypes from different single nucleotide polymorphism panels in dairy cattle. J Dairy Sci. 2010;93(11):5443–54.
Article
CAS
PubMed
Google Scholar
Groenen MAM, Megens H-J, Zare Y, Warren WC, Hillier LW, Crooijmans RPMA, et al. The development and characterization of a 60K SNP chip for chicken. BMC Genomics. 2011;12(1):274.
Article
PubMed Central
PubMed
Google Scholar
Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, et al. Development of a high density 600K SNP genotyping array for chicken. BMC Genomics. 2013;14:59.
Article
PubMed Central
CAS
PubMed
Google Scholar
Avendaño S, Watson KA, Kranis A. Genomics in poultry breeding from utopias to deliverables. Proceedings of the 9th World Congress on Genetics Applied to Livestock Production (WCGALP), 2010, http://www.kongressband.de/wcgalp2010/assets/pdf/0049.pdf.
Luo C, Qu H, Wang J, Wang Y, Ma J, Li C, et al. Genetic parameters and genome-wide association study of hyperpigmentation of the visceral peritoneum in chickens. BMC Genomics. 2013;14:334.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wolc A, Arango J, Jankowski T, Dunn I, Settar P, Fulton JE, et al. Genome-wide association study for egg production and quality in layer chickens. J Anim Breed Genet. 2014;131(3):173–82.
Article
CAS
PubMed
Google Scholar
Wolc A, Arango J, Settar P, Fulton JE, O'Sullivan NP, Preisinger R, et al. Persistence of accuracy of genomic estimated breeding values over generations in layer chickens. Genet Sel Evol. 2011;43:23.
Article
PubMed Central
PubMed
Google Scholar
Liu T, Qu H, Luo C, Shu D, Wang J, Lund MS, et al. Accuracy of genomic prediction for growth and carcass traits in Chinese triple-yellow chickens. BMC Genetics. 2014;15:110.
Article
PubMed Central
PubMed
Google Scholar
Sitzenstock F, Ytournel F, Sharifi AR, Cavero D, Täubert H, Preisinger R, et al. Efficiency of genomic selection in an established commercial layer breeding program. Genet Sel Evol. 2013;45:29.
Article
PubMed Central
PubMed
Google Scholar
Liu T, Qu H, Luo C, Li X, Shu D, Lund MS, et al. Genomic selection for the improvement of antibody response to Newcastle disease and avian influenza virus in chickens. PLoS One. 2014;9(11):e112685.
Article
PubMed Central
PubMed
Google Scholar
Wolc A, Stricker C, Arango J, Settar P, Fulton JE, O'Sullivan NP, et al. Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model. Genet Sel Evol. 2011;43:5.
Article
PubMed Central
PubMed
Google Scholar
Allais S, Hennequet-Antier C, Berri C, Chabault M, d’Abbadie F, Demeure O, et al. Fine mapping of QTL for carcass and meat quality traits in a chicken slow-growing line. Proceedings of the 10th World Congress on Genetics Applied to Livestock Production (WCGALP), 2014, https://www.asas.org/docs/default-source/wcgalp-posters/858_paper_9570_manuscript_1702_0.pdf?sfvrsn=2.
Elferink MG, Megens HJ, Vereijken A, Hu X, Crooijmans RPMA, Groenen MAM. Signatures of selection in the genomes of commercial and non-commercial chicken breeds. PLoS One. 2012;7(2):e32720.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rubin CJ, Zody MC, Eriksson J, Meadows JRS, Sherwood E, Webster MT, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature. 2010;464:587(7288)–591.
Article
Google Scholar
Megens H-J, Crooijmans RPMA, Bastiaansen JWM, Kerstens HHD, Coster A, Jalving R, et al. Comparison of linkage disequilibrium and haplotype diversity on macro- and microchromosomes in chicken. BMC Genet. 2009;10:86.
Article
PubMed Central
PubMed
Google Scholar
Ma P, Brøndum RF, Zhang Q, Lund MS, Su G. Comparison of different methods for imputing genome-wide marker genotypes in Swedish and Finnish Red cattle. J Dairy Sci. 2013;96(7):4666–77.
Article
CAS
PubMed
Google Scholar
Hayes BJ, Bowman PJ, Daetwyler HD, Kijas JW, van der Werf JHJ. Accuracy of genotype imputation in sheep breeds. Anim Genet. 2012;43(1):72–80.
Article
CAS
PubMed
Google Scholar
Pausch H, Aigner B, Emmerling R, Edel C, Götz KU, Fries R. Imputation of high-density genotypes in the Fleckvieh cattle population. Genet Sel Evol. 2013;45:3.
Article
PubMed Central
PubMed
Google Scholar
Hickey JM, Crossa J, Babu R, de los Campos G. Factors affecting the accuracy of genotype imputation in populations from several maize breeding programs. Crop Sci. 2012;52(2):654–63.
Article
Google Scholar
Duarte JLG, Bates RO, Ernst CW, Raney NE, Cantet RJC, Steibel JP. Genotype imputation accuracy in a F2 pig population using high density and low density SNP panels. BMC Genet. 2013;14:38.
Article
Google Scholar
Lin P, Hartz SM, Zhang Z, Saccone SF, Wang J, Tischfield JA, et al. A new statistic to evaluate imputation reliability. PLoS One. 2010;5(3):e9697.
Article
PubMed Central
PubMed
Google Scholar
van Binsbergen R, Bink MC, Calus MP, van Eeuwijk FA, Hayes BJ, Hulsegge I, et al. Accuracy of imputation to whole-genome sequence data in Holstein Friesian cattle. Genet Sel Evol. 2014;46(1):41.
Article
PubMed Central
PubMed
Google Scholar
Meuwissen T, Goddard M. The use of family relationships and linkage disequilibrium to impute phase and missing genotypes in up to whole-genome sequence density genotypic data. Genetics. 2010;185:1441–50.
Article
PubMed Central
PubMed
Google Scholar
Khatkar MS, Moser G, Hayes BJ, Raadsma HW. Strategies and utility of imputed SNP genotypes for genomic analysis in dairy cattle. BMC Genomics. 2012;13:538.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huang Y, Maltecca C, Cassady JP, Alexander LJ, Snelling WM, MacNeil MD. Effects of reduced panel, reference origin, and genetic relationship on imputation of genotypes in Hereford cattle. J Anim Sci. 2012;90(12):4203–8.
Article
CAS
PubMed
Google Scholar
Mulder HA, Calus MPL, Druet T, Schrooten C. Imputation of genotypes with low-density chips and its effect on reliability of direct genomic values in Dutch Holstein cattle. J Dairy Sci. 2012;95(2):876–89.
Article
CAS
PubMed
Google Scholar
Pimentel EC, Wensch-Dorendorf M, König S, Swalve HH. Enlarging a training set for genomic selection by imputation of un-genotyped animals in populations of varying genetic architecture. Genet Sel Evol. 2013;45:12.
Article
PubMed Central
PubMed
Google Scholar
Schrooten C, Dassonneville R, Ducrocq V, Brøndum RF, Lund MS, Chen J, et al. Error rate for imputation from the Illumina BovineSNP50 chip to the Illumina BovineHD chip. Genet Sel Evol. 2014;46(1):10.
Article
PubMed Central
PubMed
Google Scholar
Hickey JM, Kinghorn BP, Tier B, Wilson JF, Dunstan N, van der Werf JHJ. A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes. Genet Sel Evol. 2011;43:12.
Article
PubMed Central
PubMed
Google Scholar
Habier D, Fernando RL, Dekkers JCM. Genomic selection using low-density marker panels. Genetics. 2009;182(1):343–53.
Article
PubMed Central
CAS
PubMed
Google Scholar
Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet. 2009;84(2):210–23.
Article
PubMed Central
CAS
PubMed
Google Scholar
Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5(6):e1000529.
Article
PubMed Central
PubMed
Google Scholar
Hickey JM, Kinghorn BP, Tier B, van der Werf JHJ, Cleveland MA. A phasing and imputation method for pedigreed populations that results in a single-stage genomic evaluation. Genet Sel Evol. 2012;44:9.
Article
PubMed Central
PubMed
Google Scholar
Calus MPL, Bouwman AC, Hickey JM, Veerkamp RF, Mulder HA. Evaluation of measures of correctness of genotype imputation in the context of genomic prediction: a review of livestock applications. Anim. 2014, 1–11. doi:10.1017/S1751731114001803
Hickey JM, Kranis A. Extending long-range phasing and haplotype library imputation methods to impute genotypes on sex chromosomes. Genet Sel Evol. 2013;45:10.
Article
PubMed Central
PubMed
Google Scholar
Wang C, Habier D, Peiris BL, Wolc A, Kranis A, Watson KA, et al. Accuracy of genomic prediction using an evenly spaced, low-density single nucleotide polymorphism panel in broiler chickens. Poult Sci. 2013;92(7):1712–23.
Article
CAS
PubMed
Google Scholar
Vereijken A, Albers G, Visscher J. Imputation of SNP genotypes in chicken using a reference panel with phased haplotypes. Proceedings of the 9th World Congress on Genetics Applied to Livestock Production (WCGALP), 2010, http://www.kongressband.de/wcgalp2010/assets/pdf/0365.pdf.
Wolc A, Arango J, Settar P, Fulton JE, O’Sullivan NP, Preisinger R, et al. Accuracy of imputation with low density SNP genotyping of selection candidates and multiple generations of low density genotyped dams. 7th European Symposium on Poultry Genetics, 2011, http://www.roslin.ed.ac.uk/7espg/assets/7espg-edited-proceedings.pdf.
Wolc A, Hickey JM, Sargolzaei M, Arango J, Settar P, Fulton JE, et al. Comparison of the accuracy of genotype imputation using different methods. 7th European Symposium on Poultry Genetics, 2011, http://www.roslin.ed.ac.uk/7espg/assets/7espg-edited-proceedings.pdf.
Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bolormaa S, Pryce JE, Kemper K, Savin K, Hayes BJ, Barendse W, et al. Accuracy of prediction of genomic breeding values for residual feed intake and carcass and meat quality traits in Bos taurus, Bos indicus, and composite beef cattle. J Anim Sci. 2013;91(7):3088–104.
Article
CAS
PubMed
Google Scholar
Ventura RV, Lu D, Schenkel FS, Wang Z, Li C, Miller SP. Impact of reference population on accuracy of imputation from 6K to 50K SNP chips in purebred and crossbreed beef cattle. J Anim Sci. 2014;92(4):1433–44.
Article
CAS
PubMed
Google Scholar
Badke YM, Bates RO, Ernst CW, Schwab C, Fix J, Van Tassell CP, et al. Methods of tagSNP selection and other variables affecting imputation accuracy in swine. BMC Genet. 2013;14:8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hozé C, Fouilloux MN, Venot E, Guillaume F, Dassonneville R, Fritz S, et al. High-density marker imputation accuracy in sixteen French cattle breeds. Genet Sel Evol. 2013;45:33.
Article
PubMed Central
PubMed
Google Scholar
Li L, Li Y, Browning SR, Browning BL, Slater AJ, Kong XY, et al. Performance of genotype imputation for rare variants identified in exons and flanking regions of genes. PLoS One. 2011;6(9):e24945.
Article
PubMed Central
CAS
PubMed
Google Scholar
Calus MPL, Veerkamp RF, Mulder HA. Imputation of missing single nucleotide polymorphism genotypes using a multivariate mixed model framework. J Anim Sci. 2011;89(7):2042–9.
Article
CAS
PubMed
Google Scholar
Erbe M, Hayes BJ, Matukumalli LK, Goswami S, Bowman PJ, Reich CM, et al. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. J Dairy Sci. 2012;95(7):4114–29.
Article
CAS
PubMed
Google Scholar
Daetwyler HD, Calus MPL, Pong-Wong R, de los Campos G, Hickey JM. Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics. 2013;193(2):347–65.
Article
PubMed Central
PubMed
Google Scholar
Hill WG, Robertson A. Linkage disequilibrium in finite populations. Theor Appl Genet. 1968;38(6):226–31.
Article
CAS
PubMed
Google Scholar
de Roos AP, Hayes BJ, Spelman RJ, Goddard ME. Linkage disequilibrium and persistence of phase in Holstein-Friesian, Jersey and Angus cattle. Genetics. 2008;179(3):1503–12.
Article
PubMed Central
PubMed
Google Scholar
Liu EY, Buyske S, Aragaki AK, Peters U, Boerwinkle E, Carlson C, et al. Genotype imputation of Metabochip SNPs using a study-specific reference panel of ∼4,000 haplotypes in African Americans from the women's health initiative. Genet Epidemiol. 2012;36(2):107–17.
Heidaritabar M, Calus MPL, Vereijken A, Groenen MAM, Bastiaansen JWM. High imputation accuracy in layer chicken from sequence data on a few key ancestors. Proceedings of the 10th World Congress on Genetics Applied to Livestock Production (WCGALP), 2014, https://asas.org/docs/default-source/wcgalp-posters/660_paper_8829_manuscript_574_0.pdf.
Sun C, Wu X-L, Weigel KA, Rosa GJM, Bauck S, Woodward BW, et al. An ensemble-based approach to imputation of moderate-density genotypes for genomic selection with application to Angus cattle. Genet Res. 2012;94(3):133–50.
Article
CAS
Google Scholar
Druet T, Macleod IM, Hayes BJ. Toward genomic prediction from whole-genome sequence data: impact of sequencing design on genotype imputation and accuracy of predictions. Heredity. 2014;112(1):39–47.
Article
PubMed Central
CAS
PubMed
Google Scholar
VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91(11):4414–23.
Article
CAS
PubMed
Google Scholar
Sved JA. Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor Popul Biol. 1971;2(2):125–41.
Article
CAS
PubMed
Google Scholar
Hillier LW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP, et al. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432(7018):695–716.
Article
CAS
Google Scholar