Iqbal MJ, Faye I, Samir BB, Md Said A. Efficient feature selection and classification of protein sequence data in bioinformatics. Sci World J. 2014; 2014:1–12.
Google Scholar
Lin W, Xu D. Imbalanced multi-label learning for identifying antimicrobial peptides and their functional types. Bioinformatics. 2016; 32(24):3745–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wegier W, Ksieniewicz P. Application of imbalanced data classification quality metrics as weighting methods of the ensemble data stream classification algorithms. Entropy. 2020; 22(8):849.
Article
PubMed Central
Google Scholar
Dubey R, Zhou J, Wang Y, Thompson PM, Ye J, Initiative ADN, et al.Analysis of sampling techniques for imbalanced data: An n= 648 adni study. NeuroImage. 2014; 87:220–41.
Article
PubMed
Google Scholar
Brzezinski D, Minku LL, Pewinski T, Stefanowski J, Szumaczuk A. The impact of data difficulty factors on classification of imbalanced and concept drifting data streams. Knowl Inf Syst. 2021; 63(6):1429–69.
Article
Google Scholar
Wang L, Han M, Li X, Zhang N, Cheng H. Review of classification methods on unbalanced data sets. IEEE Access. 2021; 9:64606–28.
Article
Google Scholar
Ranganathan S, Nakai K, Schonbach C. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics. Cambridge: Elsevier; 2018.
Google Scholar
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, et al.The pfam protein families database in 2019. Nucleic Acids Res. 2019; 47(D1):427–32.
Article
CAS
Google Scholar
Tan BL, Norhaizan ME. Carotenoids: How effective are they to prevent age-related diseases?. Molecules. 2019; 24(9):1801.
Article
CAS
PubMed Central
Google Scholar
Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L. Carotenoid metabolism in plants: the role of plastids. Mol Plant. 2018; 11(1):58–74.
Article
CAS
PubMed
Google Scholar
Walter MH, Strack D. Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep. 2011; 28(4):663–92.
Article
CAS
PubMed
Google Scholar
Egea I, Barsan C, Bian W, Purgatto E, Latché A, Chervin C, Bouzayen M, Pech J-C. Chromoplast differentiation: current status and perspectives. Plant Cell Physiol. 2010; 51(10):1601–11.
Article
CAS
PubMed
Google Scholar
Bode S, Quentmeier CC, Liao P-N, Hafi N, Barros T, Wilk L, Bittner F, Walla PJ. On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc Natl Acad Sci. 2009; 106(30):12311–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruiz-Sola MÁ, Rodríguez-Concepción M. Carotenoid biosynthesis in arabidopsis: a colorful pathway. Arabidopsis Book/Am Soc Plant Biologists. 2012; 10:1–28.
Google Scholar
Dong H, Deng Y, Mu J, Lu Q, Wang Y, Xu Y, Chu C, Chong K, Lu C, Zuo J. The arabidopsis spontaneous cell death1 gene, encoding a ζ-carotene desaturase essential for carotenoid biosynthesis, is involved in chloroplast development, photoprotection and retrograde signalling. Cell Res. 2007; 17(5):458–70.
Article
CAS
PubMed
Google Scholar
Rakow G. Species origin and economic importance of brassica. In: Brassica. Manhattan: Springer: 2004. p. 3–11.
Google Scholar
McAlvay AC, Ragsdale AP, Mabry ME, Qi X, Bird K, Velasco P, An H, Pires C, Emshwiller E. Brassica rapa domestication: untangling wild and feral forms and convergence of crop morphotypes. Mol Biol Evol. 2021; 38(8):3358–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Celucia SU, Peña CD, Villa NO. Genetic characterization of brassica rapa chinensis l., b. rapa parachinensis (lh bailey) hanelt and b. oleracea alboglabra (lh bailey) hanelt using simple sequence repeat markers. Philipp J Sci. 2009; 138(2):141–52.
Google Scholar
Tuan PA, Kim JK, Lee J, Park WT, Kwon DY, Kim YB, Kim HH, Kim HR, Park SU. Analysis of carotenoid accumulation and expression of carotenoid biosynthesis genes in different organs of chinese cabbage (brassica rapa subsp. pekinensis). EXCLI J. 2012; 11:508.
PubMed
PubMed Central
Google Scholar
Laczi E, Apahidean AS. Protected culture study of chinese cabbage (brassica campestris var. pekinensis) varieties and hybrids collection grown in the transylvanian tableland specific conditions. Acta Musei. 2012; 7(3):579–88.
Google Scholar
Du Cange CDF. Glossarium Mediæ et Infimæ Latinitatis Conditum a Carolo du Fresne, Domino Du Cange: AZ, vol. 7. Lyon: L. Favre; 1886.
Google Scholar
Yu S-C, Wang Y-J, Zheng X-Y. Mapping and analysis qtl controlling some morphological traits in chinese cabbage (brassica campestris l. ssp. pekinensis). Yi chuan xue bao= Acta Genet Sin. 2003; 30(12):1153–60.
CAS
PubMed
Google Scholar
Kim Y-Y, Oh SH, Pang W, Li X, Ji S-J, Son E, Han S, Park S, Soh E, Kim H, et al.A review of the scientific names of chinese cabbage according to the international codes of nomenclature. Hortic Sci Technol. 2017; 35(2):165–9.
Google Scholar
Kang CH, Yoon EK, Muthusamy M, Kim JA, Jeong M-J, Lee SI. Blue led light irradiation enhances l-ascorbic acid content while reducing reactive oxygen species accumulation in chinese cabbage seedlings. Sci Hortic. 2020; 261:108924.
Article
CAS
Google Scholar
Kalloo G, Bergh B. Genetic Improvement of Vegetable Crops. New York: Newnes; 2012.
Google Scholar
Sun R. Economic/academic importance of brassica rapa. In: The Brassica Rapa Genome. Manhattan: Springer: 2015. p. 1–15.
Google Scholar
He Q, Zhang Z, Zhang L. Anthocyanin accumulation, antioxidant ability and stability, and a transcriptional analysis of anthocyanin biosynthesis in purple heading chinese cabbage (brassica rapa l. ssp. pekinensis). J Agric Food Chem. 2016; 64(1):132–45.
Article
CAS
PubMed
Google Scholar
Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F, et al.The genome of the mesopolyploid crop species brassica rapa. Nat Genet. 2011; 43(10):1035–9.
Article
CAS
PubMed
Google Scholar
Bolser D, Staines DM, Pritchard E, Kersey P. Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. In: Plant Bioinformatics. Manhattan: Springer: 2016. p. 115–40.
Google Scholar
Howe KL, Contreras-Moreira B, De Silva N, Maslen G, Akanni W, Allen J, Alvarez-Jarreta J, Barba M, Bolser DM, Cambell L, et al.Ensembl genomes 2020—enabling non-vertebrate genomic research. Nucleic Acids Res. 2020; 48(D1):689–95.
Article
CAS
Google Scholar
Klassen JL, Foght JM. Differences in carotenoid composition among hymenobacter and related strains support a tree-like model of carotenoid evolution. Appl Environ Microbiol. 2008; 74(7):2016–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta AK, Seth K, Maheshwari K, Baroliya PK, Meena M, Kumar A, Vinayak V, et al.Biosynthesis and extraction of high-value carotenoid from algae. Front Biosci (Landmark Edition). 2021; 26(6):171–90.
Article
CAS
Google Scholar
Couso I, Vila M, Vigara J, Cordero BF, Vargas M. Á., Rodríguez H, León R. Synthesis of carotenoids and regulation of the carotenoid biosynthesis pathway in response to high light stress in the unicellular microalga chlamydomonas reinhardtii. Eur J Phycol. 2012; 47(3):223–32.
Article
CAS
Google Scholar
Perozeni F, Beghini G, Cazzaniga S, Ballottari M. Chlamydomonas reinhardtii lhcsr1 and lhcsr3 proteins involved in photoprotective non-photochemical quenching have different quenching efficiency and different carotenoid affinity. Sci Rep. 2020; 10(1):1–10.
Article
CAS
Google Scholar
Potijun S, Yaisamlee C, Sirikhachornkit A. Pigment production under cold stress in the green microalga chlamydomonas reinhardtii. Agriculture. 2021; 11(6):564.
Article
Google Scholar
Abreu IN, Aksmann A, Bajhaiya AK, Benlloch R, Giordano M, Pokora W, Selstam E, Moritz T. Changes in lipid and carotenoid metabolism in chlamydomonas reinhardtii during induction of co2-concentrating mechanism: Cellular response to low co2 stress. Algal Res. 2020; 52:102099.
Article
Google Scholar
Stern D. The Chlamydomonas Sourcebook: Organellar and Metabolic Processes: Volume 2. Burlington: Academic Press; 2009.
Google Scholar
Tamaki S, Mochida K, Suzuki K. Diverse biosynthetic pathways and protective functions against environmental stress of antioxidants in microalgae. Plants. 2021; 10(6):1250.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vila E, Hornero-Méndez D, Azziz G, Lareo C, Saravia V. Carotenoids from heterotrophic bacteria isolated from fildes peninsula, king george island, antarctica. Biotechnol Rep. 2019; 21:00306.
Google Scholar
Marizcurrena JJ, Herrera LM, Costábile A, Morales D, Villadóniga C, Eizmendi A, Davyt D, Castro-Sowinski S. Validating biochemical features at the genome level in the antarctic bacterium hymenobacter sp. strain uv11. FEMS Microbiol Lett. 2019; 366(14):177.
Article
CAS
Google Scholar
Zhang D-C, Busse H-J, Liu H-C, Zhou Y-G, Schinner F, Margesin R. Hymenobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol. 2011; 61(4):859–63.
Article
CAS
PubMed
Google Scholar
Klassen JL, Foght JM. Characterization of hymenobacter isolates from victoria upper glacier, antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles. 2011; 15(1):45–57.
Article
PubMed
Google Scholar
Inoue K. Carotenoid hydroxylation–p450 finally!. Trends Plant Sci. 2004; 9(11):515–7.
Article
CAS
PubMed
Google Scholar
Tian L, Musetti V, Kim J, Magallanes-Lundback M, DellaPenna D. The arabidopsis lut1 locus encodes a member of the cytochrome p450 family that is required for carotenoid ε-ring hydroxylation activity. Proc Natl Acad Sci. 2004; 101(1):402–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A. Panther: a library of protein families and subfamilies indexed by function. Genome Res. 2003; 13(9):2129–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K, Vol. 35. MEGA X: Molecular Evolutionary Genetics Analysis Across Computing Platforms; 2018, pp. 1547–9.
Stefanelli P, Faggioni G, Presti AL, Fiore S, Marchi A, Benedetti E, Fabiani C, Anselmo A, Ciammaruconi A, Fortunato A, et al.Whole genome and phylogenetic analysis of two sars-cov-2 strains isolated in italy in january and february 2020: additional clues on multiple introductions and further circulation in europe. Eurosurveillance. 2020; 25(13):2000305.
Article
PubMed Central
Google Scholar
Balaban M, Moshiri N, Mai U, Jia X, Mirarab S. Treecluster: Clustering biological sequences using phylogenetic trees. PloS ONE. 2019; 14(8):0221068.
Article
CAS
Google Scholar
Zhang Z, Wood WI. A profile hidden markov model for signal peptides generated by hmmer. Bioinformatics. 2003; 19(2):307–8.
Article
CAS
PubMed
Google Scholar
Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E. The arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis. 2015; 53(8):474–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ganjewala D, Kumar S, Luthra R. An account of cloned genes of methyl-erythritol-4-phosphate pathway of isoprenoid biosynthesis in plants. Curr Issues Mol Biol. 2009; 11(s1):35–45.
Google Scholar
Pu X, Dong X, Li Q, Chen Z, Liu L. An update on the function and regulation of methylerythritol phosphate and mevalonate pathways and their evolutionary dynamics. J Integr Plant Biol. 2021; 63(7):1211–26.
Article
CAS
PubMed
Google Scholar
Li P, Zhang S, Zhang S, Li F, Zhang H, Cheng F, Wu J, Wang X, Sun R. Carotenoid biosynthetic genes in brassica rapa: comparative genomic analysis, phylogenetic analysis, and expression profiling. BMC Genomics. 2015; 16(1):1–11.
Article
CAS
Google Scholar
Soudy M, Anwar AM, Ahmed EA, Osama A, Ezzeldin S, Mahgoub S, Magdeldin S. Uniprotr: Retrieving and visualizing protein sequence and functional information from universal protein resource (uniprot knowledgebase). J Proteomics. 2020; 213:103613.
Article
CAS
PubMed
Google Scholar
Bolser D, Staines D, Pritchard E, Kersey P. Ensembl plants: Integrating tools for visualizing. Plant Bioinforma. 2016;115–40. Humana Press, New York.
O’brien KP, Remm M, Sonnhammer EL. Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res. 2005; 33(suppl_1):476–80.
Google Scholar
Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, De Castro E, Lachaize C, Langendijk-Genevaux PS, Sigrist CJ. The 20 years of prosite. Nucleic Acids Res. 2007; 36(suppl_1):245–9.
Article
CAS
Google Scholar
Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang H-Y, El-Gebali S, Fraser MI, et al.Interpro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019; 47(D1):351–60.
Article
CAS
Google Scholar
Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggnog-mapper. Mol Biol Evol. 2017; 34(8):2115–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pandurangan AP, Stahlhacke J, Oates ME, Smithers B, Gough J. The superfamily 2.0 database: a significant proteome update and a new webserver. Nucleic Acids Res. 2019; 47(D1):490–4.
Article
CAS
Google Scholar
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, et al.The string database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021; 49(D1):605–12.
Article
CAS
Google Scholar
Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V, Badretdin A, Coulouris G, Chitsaz F, Derbyshire MK, Durkin AS, et al.Refseq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res. 2021; 49(D1):1020–8.
Article
CAS
Google Scholar
Kim J, Smith JJ, Tian L, DellaPenna D. The evolution and function of carotenoid hydroxylases in arabidopsis. Plant Cell Physiol. 2009; 50(3):463–79.
Article
CAS
PubMed
Google Scholar
Burke DH, Hearst JE, Sidow A. Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc Natl Acad Sci. 1993; 90(15):7134–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashimoto H, Uragami C, Cogdell RJ. Carotenoids and photosynthesis. Carotenoids Nat. 2016; 79:111–39.
Article
CAS
Google Scholar
Havaux M. Carotenoid oxidation products as stress signals in plants. Plant J. 2014; 79(4):597–606.
Article
CAS
PubMed
Google Scholar
Gori K, Suchan T, Alvarez N, Goldman N, Dessimoz C. Clustering genes of common evolutionary history. Mol Biol Evol. 2016; 33(6):1590–605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van de Peer Y. Phylogenetic inference based on distance methods. Phylogenet Handb. 2009;142–60.
Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey AR, Potter SC, Finn RD, et al.The embl-ebi search and sequence analysis tools apis in 2019. Nucleic Acids Res. 2019; 47(W1):636–41.
Article
CAS
Google Scholar
Farrer RA. Synima: a synteny imaging tool for annotated genome assemblies. BMC Bioinformatics. 2017; 18(1):1–4.
Article
CAS
Google Scholar
Moslemi C, Skovbjerg CK, Moeskjer S, Andersen SU. Syntenizer 3000: Synteny-based analysis of orthologous gene groups. bioRxiv. 2019;618678.
Restrepo-Montoya D, McClean PE, Osorno JM. Orthology and synteny analysis of receptor-like kinases “rlk” and receptor-like proteins “rlp” in legumes. BMC Genomics. 2021; 22(1):1–17.
Article
CAS
Google Scholar
Cheng F, Wu J, Fang L, Wang X. Syntenic gene analysis between brassica rapa and other brassicaceae species. Front Plant Sci. 2012; 3:198.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boulesteix A-L, Janitza S, Kruppa J, König IR. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdiscip Rev Data Min Knowl Disc. 2012; 2(6):493–507.
Article
Google Scholar
Bursteinas B, Britto R, Bely B, Auchincloss A, Rivoire C, Redaschi N, O’Donovan C, Martin MJ. Minimizing proteome redundancy in the uniprot knowledgebase. Database. 2016; 2016:1–18.
Article
Google Scholar
Tomkins JE, Ferrari R, Vavouraki N, Hardy J, Lovering RC, Lewis PA, McGuffin LJ, Manzoni C. Pinot: an intuitive resource for integrating protein-protein interactions. Cell Commun Signal. 2020; 18(1):1–11.
Article
Google Scholar
Edgar RC. Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004; 5(1):1–19.
Article
CAS
Google Scholar
Pais FS-M, de Cássia Ruy P, Oliveira G, Coimbra RS. Assessing the efficiency of multiple sequence alignment programs. Algoritm Mol Biol. 2014; 9(1):1–8.
CAS
Google Scholar
Huang Y, Sun M, Zhuang L, He J. Molecular phylogenetic analysis of the aig family in vertebrates. Genes. 2021; 12(8):1190.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berkemer SJ, Hoffmann A, Murray CR, Stadler PF. Smore: Synteny modulator of repetitive elements. Life. 2017; 7(4):42.
Article
CAS
PubMed Central
Google Scholar
Schubert N, García-Mendoza E, Pacheco-Ruiz I. Carotenoid composition of marine red algae 1. J Phycol. 2006; 42(6):1208–16.
Article
CAS
Google Scholar
Stavropoulou E, Pircalabioru GG, Bezirtzoglou E. The role of cytochromes p450 in infection. Front Immunol. 2018; 9:89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faure AJ, Schmiedel JM, Baeza-Centurion P, Lehner B. Dimsum: an error model and pipeline for analyzing deep mutational scanning data and diagnosing common experimental pathologies. Genome Biol. 2020; 21(1):1–23.
Article
Google Scholar
Deutsch EW, Mendoza L, Shteynberg D, Slagel J, Sun Z, Moritz RL. Trans-proteomic pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. PROTEOMICS–Clin Appl. 2015; 9(7-8):745–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Käll L, et al.Integrated identification and quantification error probabilities for shotgun proteomics*[s]. Mol Cell Proteomics. 2019; 18(3):561–70.
Article
PubMed
Google Scholar
Weisser H, Wright JC, Mudge JM, Gutenbrunner P, Choudhary JS. Flexible data analysis pipeline for high-confidence proteogenomics. J Proteome Res. 2016; 15(12):4686–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carugo O. Random sampling of the protein data bank: Raspdb. Sci Rep. 2021; 11(1):1–4.
Article
CAS
Google Scholar
Oestreicher C. A history of chaos theory. Dialogues Clin Neurosci. 2007; 9(3):279.
Article
PubMed
PubMed Central
Google Scholar
Dreyfus DH. Anti-viral therapy, epstein–barr virus, autoimmunity, and chaos (the butterfly effect). In: Infect Autoimmun. Elsevier: 2015. p. 301–17.
Bouatta N, Sorger P, AlQuraishi M. Protein structure prediction by alphafold2: are attention and symmetries all you need?. Acta Crystallogr D Struct Biol. 2021; 77(8):982–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zídek A, Potapenko A, et al.Highly accurate protein structure prediction with alphafold. Nature. 2021; 596(7873):583–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schäffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin EV, Altschul SF. Improving the accuracy of psi-blast protein database searches with composition-based statistics and other refinements. Nucleic Acids Res. 2001; 29(14):2994–3005.
Article
PubMed
PubMed Central
Google Scholar
Garriga E, Di Tommaso P, Magis C, Erb I, Laayouni H, Kondrashov F, Floden E, Notredame C. Fast and accurate large multiple sequence alignments using root-to-leave regressive computation. bioRxiv. 2018;490235.
Chaturvedi N, Shanker S, Singh VK, Sinha D, Pandey PN. Hidden markov model for the prediction of transmembrane proteins using matlab. Bioinformation. 2011; 7(8):418.
Article
PubMed
PubMed Central
Google Scholar
MATLAB. Version 9.3.0 (R2017b). Natick: The MathWorks Inc.; 2021.
Google Scholar
Barton GJ. An efficient algorithm to locate all locally optimal alignments between two sequences allowing for gaps. Bioinformatics. 1993; 9(6):729–34.
Article
CAS
Google Scholar
Stigler SM. The epic story of maximum likelihood. Stat Sci. 2007; 22(4):598–620.
Article
Google Scholar
Yoshida R, Nei M. Efficiencies of the njp, maximum likelihood, and bayesian methods of phylogenetic construction for compositional and noncompositional genes. Mol Biol Evol. 2016; 33(6):1618–24.
Article
CAS
PubMed
Google Scholar
Carey G. Quantitative methods in neuroscience. Boulder: University of Colorado; 2013.
Google Scholar
Surya B. Some results on maximum likelihood estimation under the em algorithm: Asymptotic properties and consistent sandwich estimator of covariance matrix. arXiv preprint arXiv:2108.01243. 2021.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. Mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28(10):2731–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001; 18(5):691–9.
Article
CAS
PubMed
Google Scholar
Wright AM. A systematist’s guide to estimating bayesian phylogenies from morphological data. Insect Syst Divers. 2019; 3(3):2.
Article
PubMed
PubMed Central
Google Scholar
Mayahi V, Esmaelizad M. Molecular evolution and epidemiological links study of newcastle disease virus isolates from 1995 to 2016 in iran. Arch Virol. 2017; 162(12):3727–43.
Article
CAS
PubMed
Google Scholar
Lamesch P, Dreher K, Swarbreck D, Sasidharan R, Reiser L, Huala E. Using the arabidopsis information resource (tair) to find information about arabidopsis genes. Curr Protoc Bioinforma. 2010; 30(1):1–11.
Article
Google Scholar
Árnason Ú, Hallström B. The reversal of human phylogeny: Homo left africa as erectus, came back as sapiens sapiens. Hereditas. 2020; 157(1):1–13.
Article
Google Scholar
Rens W, O’Brien P, Fairclough H, Harman L, Graves J, Ferguson-Smith M. Reversal and convergence in marsupial chromosome evolution. Cytogenet Genome Res. 2003; 102(1-4):282–90.
Article
CAS
PubMed
Google Scholar
Wake D. Homoplasy: From detecting pattern to determining process and mechanism of evolution (vol 331, pg 1032, 2011). Science. 2011; 332(6025):36.
Google Scholar
Kanehisa M, Goto S. Kegg: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019; 28(11):1947–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. Kegg: integrating viruses and cellular organisms. Nucleic Acids Res. 2021; 49(D1):545–51.
Article
CAS
Google Scholar
Llauradó Maury G, Méndez Rodríguez D, Hendrix S, Escalona Arranz JC, Fung Boix Y, Pacheco AO, García Díaz J, Morris-Quevedo HJ, Ferrer Dubois A, Aleman EI, et al.Antioxidants in plants: A valorization potential emphasizing the need for the conservation of plant biodiversity in cuba. Antioxidants. 2020; 9(11):1048.
Article
CAS
PubMed Central
Google Scholar