Burt A, Trivers R. Genes in conflict: the biology of selfish genetic elements. Cambridge: Harvard University Press; 2006.
Book
Google Scholar
Seidel HS, Ailion M, Li J, van Oudenaarden A, Rockman MV, Kruglyak L. A novel sperm-delivered toxin causes late-stage embryo lethality and transmission ratio distortion in C. elegans. PLoS Biol. 2011;9:e1001115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Werren JH. Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc Natl Acad Sci U S A. 2011;108:10863–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larracuente AM. The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive. BMC Evol Biol. 2014;14:233.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aparicio JM, Ortego J, Calabuig G, Cordero PJ. Evidence of subtle departures from Mendelian segregation in a wild lesser kestrel (Falco naumanni) population. Heredity. 2010;105:213–9.
Article
CAS
PubMed
Google Scholar
Safronova LD, Chubykin VL. Meiotic drive in mice carrying t-complex in their genome. Russian J Genet. 2013;49:885–97.
Article
CAS
Google Scholar
Didion JP, Morgan AP, Clayshulte AM-F, Mcmullan RC, Yadgary L, Petkov PM, et al. A multi-megabase copy number gain causes maternal transmission ratio distortion on mouse chromosome 2. PLoS Genet. 2015;11:e1004850.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim K, Thomas S, Howard IB, Bell TA, Doherty HE, Ideraabdullah F, et al. Meiotic drive at the Om locus in wild-derived inbred mouse strains. Biol J Linn Soc. 2005;84:487–92.
Article
Google Scholar
Leppälä J, Bokma F, Savolainen O. Investigating incipient speciation in Arabidopsis lyrata from patterns of transmission ratio distortion. Genetics. 2013;194:697–708.
Article
PubMed
PubMed Central
Google Scholar
Knief U, Schielzeth H, Ellegren H, Kempenaers B, Forstmeier W. A prezygotic transmission distorter acting equally in female and male zebra finches Taeniopygia guttata. Mol Ecol. 2015;24:3846–59.
Article
PubMed
Google Scholar
Hammond TM, Rehard DG, Xiao H, Shiu PKT. Molecular dissection of Neurospora spore killer meiotic drive elements. Proc Natl Acad Sci U S A. 2012;109:12093–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larracuente AM, Presgraves DC. The selfish Segregation Distorter gene complex of Drosophila melanogaster. Genetics. 2012;192:33–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lyon MF. Transmission ratio distortion in mice. Annu Rev Genet. 2003;37:393–408.
Article
CAS
PubMed
Google Scholar
Ross BD, Malik HS. Genetic conflicts: stronger centromeres win tug-of-war in female meiosis. Curr Biol. 2014;24:R966–8.
Article
CAS
PubMed
Google Scholar
Brandvain Y, Coop G. Scrambling eggs: meiotic drive and the evolution of female recombination rates. Genetics. 2012;190:709–23.
Article
PubMed
PubMed Central
Google Scholar
Brandvain Y, Coop G. Sperm should evolve to make female meiosis fair. Evolution. 2015;69:1004–14.
Article
PubMed
PubMed Central
Google Scholar
Lyttle TW. Segregation distorters. Annu Rev Genet. 1991;25:511–57.
Article
CAS
PubMed
Google Scholar
Taylor DR, Ingvarsson PK. Common features of segregation distortion in plants and animals. Genetica. 2003;117:27–35.
Article
CAS
PubMed
Google Scholar
Haig D. Games in tetrads: segregation, recombination, and meiotic drive. Amer Nat. 2010;176:404–13.
Article
Google Scholar
Bureš P, Zedek F. Holokinetic drive: centromere drive in chromosomes without centromeres. Evolution. 2014;68:2412–20.
PubMed
Google Scholar
Price TA, Wedell N. Selfish genetic elements and sexual selection: their impact on male fertility. Genetica. 2008;134:99–111.
Article
PubMed
Google Scholar
Christianson SJ, Brand CL, Wilkinson GS. Reduced polymorphism associated with X chromosome meiotic drive in the stalk-eyed fly Teleopsis dalmanni. PLoS One. 2011;6:e27254.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindholm AK, Musolf K, Weidt A, König B. Mate choice for genetic compatibility in the house mouse. Ecol Evol. 2013;3:1231–47.
Article
PubMed
PubMed Central
Google Scholar
Lindholm AK, Dyer KA, Firman RC, Fishman L, Forstmeier W, Holman L, et al. The ecology and evolutionary dynamics of meiotic drive. Trends Ecol Evol. 2016;31:315–26.
Article
Google Scholar
Unckless RL, Larracuente AM, Clark AG. Sex-ratio meiotic drive and Y-linked resistance in Drosophila affinis. Genetics. 2015;199:831–40.
Article
PubMed
PubMed Central
Google Scholar
Brand CL, Larracuente AM, Presgraves DC. Origin, evolution, and population genetics of the selfish Segregation Distorter gene duplication in European and African populations of Drosophila melanogaster. Evolution. 2015;69:1271–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaenike J. Sex chromosome meiotic drive. Annu Rev Ecol Syst. 2001;32:25–49.
Article
Google Scholar
Johnson NA. Hybrid incompatibility genes: remnants of a genomic battlefield? Trends Genet. 2010;26:317–25.
Article
CAS
PubMed
Google Scholar
Jaenike J. X chromosome drive. Curr Biol. 2008;18:R508–11.
Article
CAS
PubMed
Google Scholar
Holman L, Price TAR, Wedell N, Kokko H. Coevolutionary dynamics of polyandry and sex-linked meiotic drive. Evolution. 2015;69:709–20.
Article
PubMed
Google Scholar
Edwards AM, Cameron EZ. Forgotten fathers: paternal influences on mammalian sex allocation. Trends Ecol Evol. 2014;29:158–64.
Article
PubMed
Google Scholar
Rice WR. An X-linked sex ratio distorter in Drosophila simulans that kills or incapacitates both noncarrier sperm and sons. G3: Genes Genomes Genet. 2014;4:1837–48.
Article
Google Scholar
Ben-David E, Burga A, Kruglyak L. A maternal-effect selfish genetic element in Caenorhabditis elegans. Science. 2017;356:1051–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buckler ES, Phelps-Durr TL, Buckler CSK, Dawe RK, Doebley JF, Holtsford TP. Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics. 1999;153:415–26.
CAS
PubMed
PubMed Central
Google Scholar
Norrell TE, Jones KS, Payton AC, McDaniel SF. Meiotic sex ratio variation in natural populations of Ceratodon purpureus (Ditrichaceae). Am J Bot. 2014;101:1572–6.
Article
PubMed
Google Scholar
Reinhardt JA, Brand CL, Paczolt KA, Johns PM, Baker RH, Wilkinson GS. Meiotic drive impacts expression and evolution of X-linked genes in stalk-eyed flies. PLoS Genet. 2014;10:e1004362.
Article
PubMed
PubMed Central
CAS
Google Scholar
Keais GL, Hanson MA, Gowen BE, Perlman SJ. X chromosome drive in a widespread Palearctic woodland fly, Drosophila testacea. J Evol Biol. 2017;30:1185–94.
Article
CAS
PubMed
Google Scholar
Fishman L, Saunders A. Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science. 2008;322:1559–62.
Article
CAS
PubMed
Google Scholar
Ascunce MS, Yang C-C, Oakey J, Calcaterra L, Wu W-J, Shih C-J, et al. Global invasion history of the fire ant Solenopsis invicta. Science. 2011;331:1066–8.
Article
CAS
PubMed
Google Scholar
Tschinkel W. The fire ants. Cambridge. USA: Harvard University Press; 2006.
Google Scholar
Ross KG, Keller L. Ecology and evolution of social organization: insights from fire ants and other highly eusocial insects. Annu Rev Ecol Syst. 1995;26:631–56.
Article
Google Scholar
Ross KG. Multilocus evolution in fire ants: effects of selection, gene flow. and recombination Genetics. 1997;145:961–74.
CAS
PubMed
Google Scholar
Gotzek D, Ross KG. Genetic regulation of colony social organization in fire ants: an integrative overview. Q Rev Biol. 2007;82:201–26.
Article
PubMed
Google Scholar
Ross KG, Keller L. Experimental conversion of colony social organization by manipulation of worker genotype composition in fire ants (Solenopsis invicta). Behav Ecol Sociobiol. 2002;51:287–95.
Article
Google Scholar
Gotzek D, Ross KG. Experimental conversion of colony social organization in fire ants (Solenopsis invicta): worker genotype manipulation in the absence of queen effects. J Insect Behav. 2008;21:337–50.
Article
Google Scholar
Ross KG, Keller L. Genetic control of social organization in an ant. Proc Natl Acad Sci U S A. 1998;95:14232–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Wurm Y, Nipitwattanaphon M, Riba-Grognuz O, Huang Y-C, Shoemaker D, et al. A Y-like social chromosome causes alternative colony organization in fire ants. Nature. 2013;493:664–8.
Article
CAS
PubMed
Google Scholar
Pracana R, Priyam A, Levantis I, Nichols RA, Wurm Y. The fire ant social chromosome supergene variant Sb shows low diversity but high divergence from SB. Mol Ecol. 2017;26:2864–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y-C, Wang J. Did the fire ant supergene evolve selfishly or socially? BioEssays. 2014;36:200–8.
Article
CAS
PubMed
Google Scholar
Huang Y-C, Dang VD, Chang N-C, Wang J. Multiple large inversions and breakpoint rewiring of gene expression in the evolution of the fire ant social supergene. Proc R Soc B. 2018;285:20180221.
Article
PubMed
PubMed Central
Google Scholar
Zheng Y, Gotzek D, Duchen P, Salamin N, Shoemaker DD, Ross KG, Keller L. Evolutionary history of a supergene that regulates a trans-species social polymorphism. 2018; in press.
DeHeer CJ, Goodisman MAD, Ross KG. Queen dispersal strategies in the multiple-queen form of the fire ant Solenopsis invicta. Amer Nat. 1999;153:660–75.
Google Scholar
Hallar BL, Krieger MJB, Ross KG. Potential cause of lethality of an allele implicated in social evolution in fire ants. Genetica. 2007;131:69–79.
Article
PubMed
Google Scholar
Krieger MJB, Ross KG. Molecular evolutionary analyses of the odorant-binding protein gene Gp-9 in fire ants and other Solenopsis species. Mol Biol Evol. 2005;22:2090–103.
Article
CAS
PubMed
Google Scholar
Gotzek D, Shoemaker DD, Ross KG. Molecular variation at a candidate gene implicated in the regulation of fire ant social behavior. PLoS One. 2007;2:e1088.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ross KG, Shoemaker DD. Estimation of the number of founders of an invasive pest insect population: the fire ant Solenopsis invicta in the United States. Proc R Soc B. 2008;275:2231–40.
Article
PubMed
PubMed Central
Google Scholar
Schwander T, Libbrecht R, Keller L. Supergenes and complex phenotypes. Curr Biol. 2014;24:R288–94.
Article
CAS
PubMed
Google Scholar
Fishman L, Kelly JK. Centromere-associated meiotic drive and female fitness variation in Mimulus. Evolution. 2015;69:1208–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lawson LP, Vander Meer RK, Shoemaker D. Male reproductive fitness and queen polyandry are linked to variation in the supergene Gp-9 in the fire ant Solenopsis invicta. Proc R Soc London B. 2012;279:3217–22.
Article
Google Scholar
Kanizay LB, Pyhäjärvi T, Lowry EG, Hufford MB, Peterson DG, Ross-Ibarra J, et al. Diversity and abundance of the abnormal chromosome 10 meiotic drive complex in Zea mays. Heredity. 2013;110:570–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sugimoto M. Developmental genetics of the mouse t-complex. Genes Genet Syst. 2014;89:109–20.
Article
CAS
PubMed
Google Scholar
Nipitwattanaphon M, Wang J, Dijkstra MB, Keller L. A simple genetic basis for complex social behaviour mediates widespread gene expression differences. Mol Ecol. 2013;22:3797–813.
Article
PubMed
Google Scholar
Grognet P, Lalucque H, Malagnac F, Silar P. Genes that bias Mendelian segregation. PLoS Genet. 2014;10:e1004387.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang YC, Lee CC, Kao CY, Chang NC, Lin CC, Shoemaker D, et al. Evolution of long centromeres in fire ants. BMC Evol Biol. 2016;16:189.
Article
PubMed
PubMed Central
CAS
Google Scholar
Buechel SD, Wurm Y, Keller L. Social chromosome variants differentially affect queen determination and the survival of workers in the fire ant Solenopsis invicta. Mol Ecol. 2014;23:5117–27.
Article
PubMed
Google Scholar
Keller L, Ross KG. Selfish genes: a green beard in the red fire ant. Nature. 1998;394:573–5.
Article
CAS
Google Scholar
Trible W, Ross KG. Chemical communication of queen supergene status in an ant. J Evol Biol. 2016;29:502–13.
Article
CAS
PubMed
Google Scholar
Gardner A, West SA. Greenbeards. Evolution. 2009;64:25–38.
Article
PubMed
Google Scholar
Jouvenaz DP, Allen GE, Banks WA, Wojcik DP. A survey for pathogens of fire ants, Solenopsis spp. in the southeastern United States. Fla Ent. 1977;60:275–9.
Article
Google Scholar
Ross KG. Differential reproduction in multiple-queen colonies of the fire ant Solenopsis invicta (Hymenoptera:Formicidae). Behav Ecol Sociobiol. 1988;23:341–55.
Article
Google Scholar
Valles SM, Porter SD. Identification of polygyne and monogyne fire ant colonies (Solenopsis invicta) by multiplex PCR of Gp-9 alleles. Insect Soc. 2003;50:199–200.
Article
Google Scholar
Krieger MJB, Ross KG. Identification of a major gene regulating complex social behavior. Science. 2002;295:328–32.
Article
CAS
PubMed
Google Scholar
Shoemaker DD, Ascunce MS. A new method for distinguishing colony social forms of the fire ant, Solenopsis invicta. J Insect Sci. 2010;10:1–11.
Article
CAS
Google Scholar
Voss SH, McDonald JF, Bryan JHD, Keith CH. Abnormal mitotic spindles: developmental block in fire ant trophic eggs. Eur J Cell Biol. 1987;45:9–15.
Google Scholar
Vargo EL, Ross KG. Differential viability of eggs laid by queens in polygyne colonies of the fire ant, Solenopsis invicta. J Insect Phys. 1989;35:587–93.
Article
Google Scholar
Krieger MJB, Ross KG, Chang CWY, Keller L. Frequency and origin of triploidy in the fire ant Solenopsis invicta. Heredity. 1999;82:142–50.
Article
Google Scholar
Gotzek D, Ross KG. Current status of a model system: the gene Gp-9 and its association with social organization in fire ants. PLoS One. 2009;4:e7713.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ross KG, Fletcher DJC. Comparative study of genetic and social structure in two forms of the fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Behav Ecol Sociobiol. 1985;17:349–56.
Article
Google Scholar
Raymond M, Rousset F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered. 1995;86:248–9.
Article
Google Scholar
Rousset F. Genepop'007: a complete reimplementation of the Genepop software for windows and Linux. Mol Ecol Res. 2008;8:103–6.
Article
Google Scholar
Huang K, Ritland K, Guo S, Dunn DW, Chen D, Ren Y, et al. Estimating pairwise relatedness between individuals with different levels of ploidy. Mol Ecol Res. 2015;15:772–84.
Article
Google Scholar
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–70.
CAS
PubMed
Google Scholar
Weir BS. Genetic data analysis II: methods for discrete population genetic data. Sunderland. In: USA: Sinauer; 1996.
Google Scholar
Xu S. Principles of statistical genomics. New York: Springer; 2013.
Book
Google Scholar
Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Res. 2010;10:564–7.
Article
Google Scholar
Nielsen R, Slatkin M. An introduction to population genetics: theory and applications. Sunderland. In: USA: Sinauer; 2013.
Google Scholar
Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.
Google Scholar
Lock RH, Lock PF, Morgan KL, Lock EF, Lock DF. Statistics: unlocking the power of data. 2nd ed. New York, NY: Wiley; 2017.
Google Scholar
Fishman L. Willis JH. A novel meiotic drive locus almost completely distorts segregation in Mimulus (monkeyflower) hybrids. Genetics. 2005;169:347–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu G, Hao L, Han Z, Gao S, Latham KE, de Villena FPM, et al. Maternal transmission ratio distortion at the mouse Om locus results from meiotic drive at the second meiotic division. Genetics. 2005;170:327–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shoemaker DD, Ross KG. Effects of social organization on gene flow in the fire ant Solenopsis invicta. Nature. 1996;383:613–6.
Article
CAS
Google Scholar
Ross KG, Shoemaker DD. Nuclear and mitochondrial genetic structure in two social forms of the fire ant Solenopsis invicta: insights into transitions to an alternate social organization. Heredity. 1997;78:590–602.
Article
Google Scholar
Shoemaker DD, DeHeer CJ, Krieger MJB, Ross KG. Population genetics of the invasive fire ant Solenopsis invicta (Hymenoptera: Formicidae) in the United States. Ann Ent Soc Amer. 2006;99:1213–33.
Article
CAS
Google Scholar
Ross KG. The breeding system of the fire ant Solenopsis invicta: effects on colony genetic structure. Amer Nat. 1993;141:554–76.
Article
CAS
Google Scholar
Kawakami T, Mugal CF, Suh A, Nater A, Burri R, Smeds L, et al. Whole-genome patterns of linkage disequilibrium across flycatcher populations clarify the causes and consequences of fine-scale recombination rate variation in birds. Mol Ecol. 2017;26:4158–72.
Article
CAS
PubMed
Google Scholar
Navarro A, Betrán E, Barbadilla A, Ruiz A. Recombination and gene flux caused by gene conversion and crossing over in inversion heterokaryotypes. Genetics. 1997;146:695–709.
CAS
PubMed
PubMed Central
Google Scholar
Hoffmann AA, Rieseberg LH. Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu Rev Ecol Evol Syst. 2008;39:21–42.
Article
PubMed
PubMed Central
Google Scholar
Pieper KE, Dyer KA. Occasional recombination of a selfish X-chromosome may permit its persistence at high frequencies in the wild. J Evol Biol. 2016;29:2229–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Novitski E. Genetic analysis of an anomalous sex ratio condition in Drosophila affinis. Genetics. 1947;32:526–34.
CAS
PubMed
PubMed Central
Google Scholar
Voelker RA. Preliminary characterization of “sex ratio” and rediscovery and reinterpretation of “male sex ratio” in Drosophila affinis. Genetics. 1972;71:597–606.
CAS
PubMed
PubMed Central
Google Scholar
Bennett D, Dunn LC, Artzt K. Genetic change in mutations at the T/t-locus in the mouse. Genetics. 1976;83:361–72.
CAS
PubMed
PubMed Central
Google Scholar
Hiraizumi Y. Negative segregation distortion in the SD system of Drosophila melanogaster: a challenge to the concept of differential sensitivity of Rsp alleles. Genetics. 1990;125:515–25.
CAS
PubMed
PubMed Central
Google Scholar
Hiraizumi Y, Albracht JM. Albracht BC. X-linked elements associated with negative segregation distortion in the SD system of Drosophila melanogaster. Genetics. 1994;138:145–52.
CAS
PubMed
PubMed Central
Google Scholar
Zheng Y. The evolution of a social supergene in fire ants. PhD thesis, Univ. Lausanne, https://serval.unil.ch/notice/serval:BIB_DB589E420FA0 (2018). Accessed 25 Aug 2018.
Machado CA, Haselkorn TS, Noor MAF. Evaluation of the genomic extent of effects of fixed inversion differences on intraspecific variation and interspecific gene flow in Drosophila pseudoobscura and D. persimilis. Genetics. 2007;175:1289–306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stevison LS, Hoehn KB, Noor MAF. Effects of inversions on within- and between-species recombination and divergence. Genome Biol Evol. 2011;3:830–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
McGaugh SE, Noor MAF. Genomic impacts of chromosomal inversions in parapatric Drosophila species. Phil Trans R Soc B. 2012;367:422–9.
Article
PubMed
PubMed Central
Google Scholar
Ducret V, Gaigher A, Simon C, Goudet J, Roulin A. Sex-specific allelic transmission bias suggests sexual conflict at MC1R. Mol Ecol. 2016;25:4551–63.
Article
CAS
PubMed
Google Scholar
Henikoff S, Ahmad K, Malik HS. The centromere paradox: stable inheritance with rapidly evolving DNA. Science. 2001;293:1098–102.
Article
CAS
PubMed
Google Scholar
Chmátal L, Gabriel SI, Mitsainas GP, Martínez-Vargas J, Ventura J, Searle JB, et al. Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Curr Biol. 2014;24:2295–300.
Article
PubMed
PubMed Central
CAS
Google Scholar
Akera T, Chmátal L, Trimm E, Yang K, Aonbangkhen C, Chenoweth DM, et al. Spindle asymmetry drives non-Mendelian chromosome segregation. Science. 2017;358:668–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finseth FR, Dong Y, Saunders A, Fishman L. Duplication and adaptive evolution of a key centromeric protein in Mimulus, a genus with female meiotic drive. Mol Biol Evol. 2015;32:2694–706.
Article
CAS
PubMed
Google Scholar
Rosin LF, Mellone BG. Centromeres drive a hard bargain. Trends Genet. 2017;33:101–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kingan SB, Garrigan D, Hartl DL. Recurrent selection on the winters sex-ratio genes in Drosophila simulans. Genetics. 2010;184:253–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bachtrog D. Signs of genomic battles in mouse sex chromosomes. Cell. 2014;159:716–8.
Article
CAS
PubMed
PubMed Central
Google Scholar