Zhang C, Zhou Z, Yong H, Zhang X, Hao Z, Zhang F, Li M, Zhang D, Li X, Wang Z. Analysis of the genetic architecture of maize ear and grain morphological traits by combined linkage and association mapping. Theor Appl Genet. 2017;130(5):1011–29.
Article
PubMed
CAS
Google Scholar
Buckler ES, Stevens NM. Maize Origins, Domestication, and Selection. 2005.
Google Scholar
Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevens TM, Elshire RJ, Acharya CB, Mitchell SE, Flintgarcia SA. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol. 2013;14(6):R55.
Article
PubMed
PubMed Central
CAS
Google Scholar
FAO. Global agriculture towards 2050. Brieing paper for FAO high-level expert forum on “How to feed the world 2050,” Rome. 21–13 Oct. 2009. Available at http://www.fao.org/wsfs/world-summit/en (veriied 6 Dec. 2010). Food and Agriculture Organization of the United Nations, Rome 2009.
Yan J, Warburton M, Crouch J. Association mapping for enhancing maize ( L.) genetic improvement. Crop Sci. 2011;51(2):433.
Article
Google Scholar
Tilman D, Cassman KG, Matson PA. Agricultural sustainability and intensive production practices. Nature. 2002;418:671–8.
Article
PubMed
CAS
Google Scholar
Chen F, Fang Z, Gao Q, Youliang Y, Jia L, Yuan L, Mi G, Zhang F. Evaluation of the yield and nitrogen use efficiency of the dominant maize hybrids grown in north and Northeast China. Sci China Life Sci. 2013;56(6):552.
Article
PubMed
Google Scholar
Sabadin PK, Júnior CLS, Souza AP, Garcia AAF. QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas. 2008;145(4):194–203.
Article
Google Scholar
Lu M, Xie C, Li X, Hao Z, Li M, Weng J, Zhang D, Bai L, Zhang S. Mapping of quantitative trait loci for kernel row number in maize across seven environments. Mol Breed. 2010;28(2):143–52.
Article
Google Scholar
Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet. 2013;45(1):43–50.
Article
PubMed
CAS
Google Scholar
Zuo W, Chao Q, Zhang N, Ye J, Tan G, Li B, Xing Y, Zhang B, Liu H, Fengler KA. A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet. 2015;47(2):151.
Article
PubMed
CAS
Google Scholar
Chen W, Gao Y, Xie W, Gong L, Lu K, Wang W, Li Y, Liu X, Zhang H, Dong H. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet. 2014;46(2):714.
Article
PubMed
CAS
Google Scholar
Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet. 2001;28(3):286–9.
Article
PubMed
CAS
Google Scholar
Wen Z, Zhao T, Zheng Y, Liu S, Wang C, Wang F, Gai J. Association analysis of agronomic and quality traits with SSR markers in glycine max and glycine soja in China:II. Exploration of elite alleles. Acta Agron Sin. 2008;34(8):1339–49. (in Chinese)
Article
CAS
Google Scholar
Fan H, Wen Z, Wang C, Wang F, Xing G, Zhao T, Gai J. Association analysis between agronomic-processing traits and SSR markers and genetic dissection of specific accessions in Chinese wild soybean population. Acta Agron Sin. 2013;39(5):775–88. (in Chinese)
Article
CAS
Google Scholar
Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds MP. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet. 2015;128(2):353–63.
Article
PubMed
CAS
Google Scholar
Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet. 2010;42(11):961.
Article
PubMed
CAS
Google Scholar
Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature. 2010;465(7298):627.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu L, Du Y, Shen X, Li M, Sun W, Huang J, Liu Z, Tao Y, Zheng Y, Yan J. KRN4 controls quantitative variation in maize kernel row number. PLoS Genet. 2015;11(11):e1005670.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lu Y, Yan J, Guimarães CT, Taba S, Hao Z, Gao S, Chen S, Li J, Zhang S, Vivek BS. Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet. 2009;120(1):93–115.
Article
PubMed
CAS
Google Scholar
Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. Plos One. 2011;6(12):e28334.
Article
PubMed
PubMed Central
CAS
Google Scholar
Unterseer S, Bauer E, Haberer G, Seidel M, Knaak C, Ouzunova M, Meitinger T, Strom TM, Fries R, Pausch H. A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array. BMC Genomics. 2014;15(1):823.
Article
PubMed
PubMed Central
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ott A, Liu S, Schnable JC, Yeh C, Wang KS, Schnable PS. tGBS® genotyping-by-sequencing enables reliable genotyping of heterozygous loci. Nucleic Acids Res. 2017;45(21):e178.
Suwarno WB, Pixley KV. Genome-wide association analysis reveals new targets for carotenoid biofortification in maize. Theor Appl Genet. 2015;128(5):851–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brekke BH. Agronomic and phenotypic responses to 75 years of recurrent selection for yield in the Iowa stiff stalk synthetic maize population. Dissertations & Theses - Gradworks. 2010.
Knapp SJ. Confidence intervals for heritability for two-factor mating design single environment linear models. Theor Appl Genet. 1986;72(5):587–91.
Article
PubMed
CAS
Google Scholar
Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8(19):4321–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schnable PS, Liu S, Wu W. Genotyping by next-generation sequencing. US, WO 2013106737 A1[P]. 2013.
Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998;8:186–94.
Article
PubMed
CAS
Google Scholar
Ewing B, Hillier M, Wendl C, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 1998;8:175–85.
Article
PubMed
CAS
Google Scholar
Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010;26:873–81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5.
Article
PubMed
CAS
Google Scholar
Liu K, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics. 2005;21(9):2128–9.
Article
PubMed
CAS
Google Scholar
Tang Y, Liu X, Wang J, Li M, Wang Q, Tian F, Su Z, Pan Y, Liu D, Lipka AE. GAPIT version 2: an enhanced integrated tool for genomic association and prediction. Plant Genome. 2016;9(2):1-9.
Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38(2):203–8.
Article
PubMed
CAS
Google Scholar
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19(9):1655–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Deng M, Li D, Luo J, Xiao Y, Liu H, Pan Q, Zhang X, Jin M, Zhao M, Yan J. The genetic architecture of amino acids dissection by association and linkage analysis in maize. Plant Biotechnol J. 2017;15(10):1250.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cui Z, Luo J, Qi C, Ruan Y, Li J, Zhang A, Yang X, He Y. Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize. BMC Genomics. 2016;17(1):946.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu D, Wang J, Wang X, Yang X, Sun J, Chen W. Genetic diversity and elite gene introgression reveal the japonica rice breeding in northern China. J Integr Agric. 2015;14(5):811–22.
Article
CAS
Google Scholar
Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith JSC, Jaqueth J, Smith OS, Doebley J. An analysis of genetic diversity across the maize genome using microsatellites. Genetics. 2005;169(3):1617–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang W, Xu S, Gao J, Zhang X, Guo D, Li X, Xue J. Analysis of genetic diversity of maize inbred lines based on SNP markers. J Maize Sci. 2015;2:41–5. (in Chinese)
CAS
Google Scholar
Wu Y, San Vicente F, Huang K, Dhliwayo T, Costich DE, Semagn K, Sudha N, Olsen M, Prasanna BM, Zhang X, et al. Molecular characterization of CIMMYT maize inbred lines with genotyping-by-sequencing SNPs. Theor Appl Genet. 2016;129(4):753–65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brouard JS, Boyle B, Ibeagha-Awemu EM, Bissonnette N. Low-depth genotyping-by-sequencing (GBS) in a bovine population: strategies to maximize the selection of high quality genotypes and the accuracy of imputation. BMC Genet. 2017;18(1):32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ibeagha-Awemu EM, Peters SO, Akwanji KA, Imumorin IG, Zhao X. High density genome wide genotyping-by-sequencing and association identifies common and low frequency SNPs, and novel candidate genes influencing cow milk traits. Sci Rep. 2016;6:31109.
Article
PubMed
PubMed Central
CAS
Google Scholar
Duvick DN, Smith JSC, Cooper M. Long-term selection on a commercial hybrid maize breeding program. Plant Breed Rev. 2004;24:109–51.
Boppenmaier J, Melchinger AE, Seitz G, Geiger H, Herrmann R. Genetic diversity for RFLPs in European maize inbreds. III. Performance of crosses within versus between heterotic groups for grain traits. Plant Breed. 1993;113:219-26.
Zhang R, Xu G, Li J, Yan J, Li H, Yang X. Patterns of genomic variation in Chinese maize inbred lines and implications for genetic improvement. Theor Appl Genet. 2018;131(6):1–15.
CAS
Google Scholar
Teng W, Cao Q, Chen Y, Liu X, Men S, Jing X, Li J. Analysis of maize heterotic groups and patterns during past decade in China. Agric Sci Chin. 2004;3(7):481–9. (in Chinese)
Google Scholar
Wang R, Yu Y, Zhao J, Shi Y, Song Y, Wang T, Li Y. Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theor Appl Genet. 2008;117(7):1141–53.
Article
PubMed
CAS
Google Scholar
Xie C, Zhang S, Li M, Li X, Hao Z, Bai L, Zhang D, Liang Y. Inferring genome ancestry and estimating molecular relatedness among 187 Chinese maize inbred lines. J Genet Genom. 2007;34(8):738–48.
Article
Google Scholar
Yang X, Gao S, Xu S, Zhang Z, Prasanna BM, Li L, Li J, Yan J. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed. 2011;28(4):511–26.
Article
Google Scholar
Zhang X, Zhang H, Li L, Lan H, Ren Z, Liu D, Wu L, Liu H, Jaqueth J, Li B, et al. Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers. BMC Genomics. 2016;17:697.
Article
PubMed
PubMed Central
Google Scholar
Yang X, Yan J, Shah T, Warburton ML, Li Q, Lin L, Gao Y, Chai Y, Fu Z, Yi Z. Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet. 2010;121(3):417–31.
Article
PubMed
Google Scholar
Wu X, Li Y, Shi Y, Song Y, Wang T, Huang Y, Li Y. Fine genetic characterization of elite maize germplasm using high-throughput SNP genotyping. Theor Appl Genet. 2014;127(3):621–31.
Article
PubMed
Google Scholar
Iqbal M, Khan K, Sher H, Al-Yemeni MN. Genotypic and phenotypic relationship between physiological and grain yield related traits in four maize (Zea mays L.) crosses of subtropical climate. Sci Res Essays. 2011;6(13):2864-72.
Mason HS, Mullet JE. Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. Plant Cell. 1990;2(6):569–79.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu Y, Ahn J, Datta S, Salzman R, Moon J, Huyghues-Despointes B, Pittendrigh B, Murdock LL, Koiwa H, Zhu-Salzman K. Arabidopsis vegetative storage protein is an anti-insect acid phosphatase. Plant Physiol. 2005;139(3):1545.
Article
PubMed
PubMed Central
CAS
Google Scholar
Phillips J, Artsaenko O, Fiedler U, Horstmann C, Mock HP, Müntz K, Conrad U. Seed-specific immunomodulation of abscisic acid activity induces a developmental switch. EMBO J. 1997;16(15):4489–96.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chevalier F, Perazza D, Laporte F, Le HG, Hornitschek P, Bonneville JM, Herzog M, Vachon G. GeBP and GeBP-like proteins are noncanonical leucine-zipper transcription factors that regulate cytokinin response in Arabidopsis. Plant Physiol. 2008;146(3):1142.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zourelidou M, Torres-Zabala MD, Smith C, Bevan MW. Storekeeper defines a new class of plant-specific DNA-binding proteins and is a putative regulator of patatin expression. Plant J. 2002;30(4):489–97.
Article
PubMed
CAS
Google Scholar
Chung MS, Lee S, Min JH, Huang P, Ju HW, Kim CS. Regulation of Arabidopsis thaliana plasma membrane glucose-responsive regulator (AtPGR) expression by a. Thaliana storekeeper-like transcription factor, AtSTKL, modulates glucose response in Arabidopsis. Plant Physiol. 2016;104:155.
CAS
Google Scholar
Yao D, Liu X, Yin Y, Han S, Yang L, Yang L, Hao D. Affinity chromatography revealed insights into unique functionality of two 14-3-3 protein species in developing maize kernels. J Proteome. 2015;114:274.
Article
CAS
Google Scholar
Cui D, Wu D, Liu J, Li D, Xu C, Li S, Li P, Zhang H, Liu X, Jiang C. Proteomic analysis of seedling roots of two maize inbred lines that differ significantly in the salt stress response. PLoS One. 2015;10(2):e0116697.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rooney MF, Ferl RJ. Sequences of three Arabidopsis general regulatory factor genes encoding GF14 (14–3-3) proteins. Plant Physiol. 1995;107(1):283–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tollenaar M, Lee EA. Yield potential, yield stability and stress tolerance in maize. Field Crops Res. 2002;75(2–3):161–9.
Article
Google Scholar
Moreau L, Charcosset A, Gallais A. Use of trial clustering to study QTL x environment effects for grain yield and related traits in maize. Theor Appl Genet. 2004;110(1):92–105.
Article
PubMed
CAS
Google Scholar
Paniagua C, Bilkova A, Jackson P, Dabravolski S, Riber W, Didi V, Houser J, Gigli-Bisceglia N, Wimmerova M, Budinska E. Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure. J Exp Bot. 2017;68(13):3287-301
Cheng M, Hsieh EJ, Chen J, Chen H, Lin T. Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiol. 2012;158(1):363–75.
Article
PubMed
CAS
Google Scholar
Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohmetakagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box–mediated gene expression. Plant Cell. 2000;12(3):393.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J. 2010;18(1):111–9.
Article
Google Scholar
Colebrook EH, Thomas SG, Phillips AL, Hedden P. The role of gibberellin signalling in plant responses to abiotic stress. J Exp Bot. 2014;217(1):67–75.
Article
CAS
Google Scholar
Mao H, Wang H, Liu S, Li Z, Yang X, Yan J, Li J, Tran LSP, Feng Q. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun. 2015;6(8326):8326.
Article
PubMed
CAS
Google Scholar
Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, Yang X, Qin F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet. 2016;48(10):1233.
Article
PubMed
CAS
Google Scholar
Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J. 2007;50(1):54–69.
Article
PubMed
CAS
Google Scholar