Hindorff LA, MacArthur J (European Bioinformatics Institute), Morales J (European Bioinformatics Institute), Junkins HA, Hall PN, et al.: (n.d.) A Catalog of Published Genome-Wide Association Studies. Available: http://www.ebi.ac.uk/gwas/. Accessed 9 Apr 2013.
Bansal V, Libiger O, Torkamani A, Schork NJ. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet. 2010;11(11):773–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9:356–69.
Article
CAS
PubMed
Google Scholar
Schork NJ, Murray SS, Frazer KA, Topol EJ. Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev. 2009;19:212–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273:1516–7.
Article
CAS
PubMed
Google Scholar
Park JY, Wu C, Pan W. An adaptive gene-level association test for pedigree data. BMC Genet. 2018;19(Suppl 1). https://doi.org/10.1186/s12863-018-0639-2.
Gao T, Zhang J, Miguel DM, Wang X. Methods to evaluate rare variants gene-age interaction for triglycerides. BMC Proc. 2018;12(Suppl 9). https://doi.org/10.1186/s12919-018-0136-7.
Zhou X, Wang M, Zhang H, Stewart W, Lin L. Logistic Bayesian LASSO for detecting association combining family and case-control data. BMC Proc. 2018;12(Suppl 9). https://doi.org/10.1186/s12919-018-0139-4.
Deng X, Wang B, Fisher V, Peloso GM, Cupples LA, Liu CT. Genome-wide association study for multiple phenotype analysis. BMC Proc. 2018;12(Suppl 7). https://doi.org/10.1186/s12919-018-0135-8.
Shen X, Lu Q. Joint analysis of genetic and epigenetic data using a conditional autoregressive model. BMC Genet. 2018;19(Suppl 1). https://doi.org/10.1186/s12863-018-0641-8
Chen Y, Peloso GM, Dupuis J. Evaluation of phenotype imputation approach using GAW20 simulated data. BMC Proc. 2018;12(Suppl 9). https://doi.org/10.1186/s12919-018-0134-9.
Blackburn NB, Porto A, Peralta JM, Blangero J. Heritability and genetic associations of triglyceride and HDL-C levels using pedigree based and empirical kinships. BMC Proc. 2018;12(Suppl 9). https://doi.org/10.1186/s12919-018-0133-x.
Peralta JM, Blackburn N, Porto A, Blangero J, Charlesworth J. Genome-wide linkage scan for loci influencing plasma triglyceride levels. BMC Proc. 2018;12(Suppl 9). https://doi.org/10.1186/s12919-018-0137-6.
Porto A, Peralta JM, Blackburn NB, Blangero J. Reliability of genomic predications of complex human phenotypes. BMC Proc. 2018;12(Suppl 9). https://doi.org/10.1186/s12919-018-0138-5.
Fridley BL, Biernacka JM. Gene set analysis of SNP data: benefits, challenges, and future directions. Eur J Hum Genet. 2011;19:837–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Lee S, Zhu X, Redline S, Lin X. GEE-based SNP set association test for continuous and discrete traits in family-based association studies. Genet Epidemiol. 2013;37(8):778–86.
Article
PubMed
PubMed Central
Google Scholar
Li M-X, Gui H-S, Kwan JS, Sham PC. GATES: a rapid and powerful gene-based association test using extended Simes procedure. Am J Hum Genet. 2011;88:283–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang K, Abbott D. A principal components regression approach to multilocus genetic association studies. Genet Epidemiol. 2008;32:108–18.
Article
PubMed
Google Scholar
Chun H, Ballard DH, Cho J, Zhao H. Identification of association between disease and multiple markers via sparse partial least squares regression. Genet Epidemiol. 2011;35:479–86.
PubMed
Google Scholar
Wang T, Ho G, Ye K, Strickler H, Elston RC. A partial least square approach for modeling gene gene and gene environment interactions when multiple markers are genotyped. Genet Epidemiol. 2009;33:6–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dudbridge F, Koeleman BPC. Rank truncated product of P values, with application to genome-wide association scans. Genet Epidemiol. 2003;25:360–6.
Article
PubMed
Google Scholar
Yu K, Li Q, Bergen AW, Pfeiffer RM, Rosenberg PS, Caporaso N, Kraft P, Chatterjee N. Pathway analysis by adaptive combination of P values. Genet Epidemiol. 2009;33:700–9.
Article
PubMed
PubMed Central
Google Scholar
Zaykin DV, Zhivotovsky LA, Westfall PH, Weir BS: Truncated product method for combining P values. Genet Epidemiol 2002, 22: 170–185.
Article
CAS
PubMed
Google Scholar
Li X, Basu S, Miller MB, Iacono W, McGue M. A rapid generalized least squares model for a genome-wide quantitative trait association analysis in families. Hum Hered. 2011;71(1):67–82.
Article
PubMed
PubMed Central
Google Scholar
Park JY, Wu C, Basu S, McGue M, Pan W. Adaptive SNP-set association testing in generalized linear mixed models with application to family studies. Behav Genet. 2018;48(1):55–66.
Article
PubMed
Google Scholar
Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, Lin X. Powerful SNP-set analysis for case-control genome-wide association studies. Am J Hum Genet. 2010;86:929–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet. 2011;89:82–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han F, Pan W. A data-adaptive sum test for disease association with multiple common or rare variants. Hum Hered. 2010;70(1):42–54.29.
Article
PubMed
PubMed Central
Google Scholar
Pan W, Kim J, Zhang Y, Shen X, Wei P. A powerful and adaptive association test for rare variants. Genetics. 2014;197(4):1081–95.
Article
PubMed
PubMed Central
Google Scholar
Sha Q, Wang X, Wang X, Zhang S. Detecting association of rare and common variants by testing an optimally weighted combination of variants. Genet Epidemiol. 2012;36(6):561–71.
Article
PubMed
Google Scholar
Biswas S, Lin S. Logistic Bayesian LASSO for identifying association with rare haplotypes and application to age-related macular degeneration. Biometrics. 2012;68:587–97.
Article
CAS
PubMed
Google Scholar
Sivakumaran S, Agakov F, Theodoratou E, Prendergast JG, Zgaga L, Manolio T, Rudan I, Mckeigue P, Wilson JF, Campbell H. Abundant pleiotropy in human complex diseases and traits. Am J Hum Genet. 2011;89:607–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solovieff N, Cotsapas C, Lee PH, Purcell SM Smoller JW. Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet. 2013;14:483–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Der Sluis S, Posthuma D, Dolan CV. TATES: efficient multivariate genotype-phenotype analysis for genomewide association studies. PLoS Genet. 2013;9:e1003235.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korte A, Vilhjalmsson BJ, Segura V, Platt A, Long Q, Nordborg M. A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nat Genet. 2012;44:1066–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
O'Reilly PF, Hoggart CJ, Pomyen Y, Calboli FC, Elliott P, Jarvelin MR, Coin LJ. MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS. PLoS One. 2012;7:e34861.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat Methods. 2014;11:407–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ott J, Wang J. Multiple phenotypes in genome-wide genetic mapping studies. Protein Cell. 2011;2(7):519–22.
Article
PubMed
PubMed Central
Google Scholar
Yang Q, Wang Y. Methods for analyzing multivariate phenotypes in genetic association studies. J Probab Stat. 2012;1012:652569.
Google Scholar
Ray D, Pankow JS, Basu S. USAT: a unified score-based association test for multiple phenotype-genotype analysis. Genet Epidemiol. 2016;40(1):20–34.
Article
PubMed
Google Scholar
Kristensen VN, Lingjaerde OC, Russnes HG, Vollan HK, Frigessi A, Borresen-Dale AL. Principles and methods of integrative genomic analyses in cancer. Nat Rev Cancer. 2014;14(5):299–313.
Article
CAS
PubMed
Google Scholar
Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet. 2015;16(2):85–97.
Article
CAS
PubMed
Google Scholar
Davies RB. Algorithm AS 155: the distribution of a linear combination of χ2 random variables. J R Stat Soc Ser C Appl Stat. 1980;29(3):323–33.
Google Scholar
Hormozdiari F, Kang EY, Bilow M, Ben-David E, Vulpe C, McLachlan S, Lusis AJ, Han B, Eskin E. Imputing phenotypes for genome-wide association studies. Am J Hum Genet. 2016;99:89–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998;62(5):1198–1211.48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Speed D, Hemani G, Johnson MR, Balding DJ. Improved heritability estimation from genome-wide SNPs. Am J Hum Genet. 2012;91:1011–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Speed D, Cai N, UCLEB Consortium JMR, Nejentsev S, Balding DJ. Re-evaluation of SNP heritability in complex human traits. Nat Genet. 2017;49(7):986–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han L, Abney M. Identity by descent estimation with dense genome-wide genotype data. Genet Epidemiol. 2011;35(6):557–67.
PubMed
PubMed Central
Google Scholar
Aslibekyan S, Goodarzi MO, Frazier-Wood AC, Yan X, Irvin MR, Kim E, Tiwari HK, Guo X, Straka RJ, Taylor KD, et al.: Variants identified in a GWAS meta-analysis for blood lipids are associated with the lipid response to fenofibrate. PLoS One 2012, 7(10): e48663.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin X, Lee S, Wu MC, Wang C, Chen H, Li Z, Lin X. Test for rare variants by environment interactions in sequencing association studies. Biometrics. 2016;72(1):156–64.
Article
CAS
PubMed
Google Scholar
Hong EP, Park JW. Sample size and statistical power calculation in genetic association studies. Genomics Inform. 2012;10(2):117–22.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Xiao R, Zhu X, Li M. Gene mapping in admixed families: a cautionary note on the interpretation of the transmission disequilibrium test and a possible solution. Hum Hered. 2016;81(2):106–16.
Article
CAS
PubMed
Google Scholar
Sattar N, McConnachie A, Shaper AG, Blauw GJ, Buckley BM, De Craen AJ, Ford I, Forouhi NG, Freeman DJ, Jukema JW, et al.: Can metabolic syndrome usefully predict cardiovascular disease and diabetes? Outcome data from two prospective studies. Lancet 2008, 371: 1927–1935.
Article
Google Scholar
Aschard H, Vilhjalmsson BJ, Greliche N, Morange PE, Tregouet DA, Kraft P. Maximizing the power of principal-component analysis of correlated phenotypes in genome-wide association studies. Am J Hum Genet. 2014;94:662–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11:446–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, et al.: Finding the missing heritability of complex diseases. Nature 2009, 461: 747–753.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet. 2005;6:95–108.
Article
CAS
PubMed
Google Scholar
Cantor RM, Lange K, Sinsheimer JS. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet. 2010;86:6–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nat Genet. 2000;25:25–9.
CAS
PubMed
Google Scholar
Holmans P. Statistical methods for pathway analysis of genome-wide data for association with complex genetic traits. Adv Genet. 2010;72:141–79.
PubMed
Google Scholar
Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-wide association studies. Nat Rev Genet. 2010;11:843–54.
Article
CAS
PubMed
Google Scholar
Wang X, Zhao X, Zhou J. Testing rare variants for hypertension using family-based tests with different weighting schemes. BMC Proc. 2016;10(Suppl 7):61.
Article
Google Scholar
Gail MH. Discriminatory accuracy from single nucleotide polymorphisms in models to predict breast cancer risk. J Natl Cancer Inst. 2008;100:1037–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janssens AC, van Duijn CM. Genome-based prediction of common diseases: advances and prospects. Hum Mol Genet. 2008;17(R2):R166–73.
Article
CAS
PubMed
Google Scholar