Ali N, Heslop-Harrison JS, Ahmad H, Graybosch RA, Hein GL, Schwarzacher T. Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance. Heredity. 2016;117(2):114–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
King J, Armstead I, Harper J, Ramsey L, Snape J, Waugh R, James C, Thomas A, Gasior D, Kelly R, et al. Exploitation of interspecific diversity for monocot crop improvement. Heredity (Edinb). 2013;110(5):475–83.
Article
CAS
Google Scholar
Hajjar R, Hodgkin T. The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica. 2007;156(1–2):1–13.
Article
Google Scholar
Niu Z, Klindworth DL, Friesen TL, Chao S, Jin Y, Cai X, Xu SS. Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics. 2011;187(4):1011–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olson EL, Rouse MN, Pumphrey MO, Bowden RL, Gill BS, Poland JA. Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat. Theor Appl Genet. 2013;126(10):2477–84.
Article
CAS
PubMed
Google Scholar
Pradhan GP, Prasad PV. Evaluation of wheat chromosome translocation lines for high temperature stress tolerance at grain filling stage. PLoS One. 2015;10(2):e0116620.
Article
PubMed
PubMed Central
Google Scholar
Rahmatov M, Rouse MN, Steffenson BJ, Andersson SC, Wanyera R, Pretorius ZA, Houben A, Kumarse N, Bhavani S, Johansson E. Sources of stem rust resistance in wheat-alien introgression lines. Plant Dis. 2016;100(6):1101–9.
Article
CAS
Google Scholar
Zhang H, Mittal N, Leamy LJ, Barazani O, Song BH. Back into the wild-apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl. 2017;10(1):5–24.
Article
PubMed
Google Scholar
Kishii M, Yamada T, Sasakuma T, Tsujimoto H. Production of wheat-Leymus racemosus chromosome addition lines. Theor Appl Genet. 2004;109(2):255–60.
Article
CAS
PubMed
Google Scholar
Kishii M, Dou Q, Garg M, Ito M, Tanaka H, Tsujimoto H. Production of wheat-Psathyrostachys huashanica chromosome addition lines. Genes Genet Syst. 2010;85(4):281–6.
Article
PubMed
Google Scholar
Zhang P, Dundas IS, Xu SS, Friebe B, RA MI, Raupp WJ. chromosome engineering techniques for targeted introgression of rust resistance from wild wheat relatives. Methods Mol Biol. 2017;1659:163–72.
Article
PubMed
Google Scholar
Larson SR, Kishii M, Tsujimoto H, Qi L, Chen P, Lazo GR, Jensen KB, Wang RR. Leymus EST linkage maps identify 4NsL-5NsL reciprocal translocation, wheat-Leymus chromosome introgressions, and functionally important gene loci. Theor Appl Genet. 2012;124(1):189–206.
Article
CAS
PubMed
Google Scholar
Anamthawat-Jonsson K. Molecular cytogenetics of Leymus: mapping the ns genome-specific repetitive sequences. J Syst Evol. 2014;52(6):716–21.
Article
Google Scholar
Anamthawat-Jonsson K, Bodvarsdottir SK. Genomic and genetic relationships among species of Leymus (Poaceae: Triticeae) inferred from 18S-26S ribosomal genes. Am J Bot. 2001;88(4):553–9.
Article
CAS
PubMed
Google Scholar
Chen P, Liu W, Yuan J, Wang X, Zhou B, Wang S, Zhang S, Feng Y, Yang B, Liu G, et al. Development and characterization of wheat- Leymus racemosus translocation lines with resistance to fusarium head blight. Theor Appl Genet. 2005;111(5):941–8.
Article
PubMed
Google Scholar
Qi LL, Pumphrey MO, Friebe B, Chen PD, Gill BS. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to fusarium head blight disease of wheat. Theor Appl Genet. 2008;117(7):1155–66.
Article
CAS
PubMed
Google Scholar
McGuire P, Dvorak J. high salt-tolerance potential in wheatgrasses. Crop Sci. 1981;21:702–5.
Article
Google Scholar
Hagras AAA, Kishii M, Sato K, Tanaka H, Tsujimoto H. Extended application of barley EST markers for the analysis of alien chromosomes added to wheat genetic background. Breeding Sci. 2005;55(3):335–41.
Article
CAS
Google Scholar
Wang RR, Larson SR, Jensen KB. Differential transferability of EST-SSR primers developed from the diploid species Pseudoroegneria spicata, Thinopyrum bessarabicum, and Thinopyrum elongatum. Genome. 2017;60(6):530–6.
Article
CAS
PubMed
Google Scholar
Pang YH, Zhao JX, Du WL, Li YL, Wang J, Wang LM, Wu J, Cheng XN, Yang QH, Chen XH. Cytogenetic and molecular identification of a wheat-Leymus mollis alien multiple substitution line from octoploid Tritileymus x Triticum durum. Genet Mol Res. 2014;13(2):3903–13.
Article
CAS
PubMed
Google Scholar
Bushman BS, Larson SR, Mott IW, Cliften PF, Wang RR, Chatterton NJ, Hernandez AG, Ali S, Kim RW, Thimmapuram J, et al. Development and annotation of perennial Triticeae ESTs and SSR markers. Genome. 2008;51(10):779–88.
Article
CAS
PubMed
Google Scholar
Rey MD, Prieto P. Detection of alien genetic introgressions in bread wheat using dot-blot genomic hybridisation. Mol Breed. 2017;37(3):32.
Article
PubMed
PubMed Central
Google Scholar
Yang C, Zhang H, Chen W, Kang H, Wang Y, Sha L, Fan X, Zeng J, Zhou Y. Genomic constitution and intergenomic translocations in the Elymus dahuricus complex revealed by multicolor GISH. Genome. 2017;60(6):510–7.
Article
CAS
PubMed
Google Scholar
Lukaszewski A. Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci. 1999;40(1):216–25.
Article
Google Scholar
Anamthawat-Jonsson K. Genetic and genomic relationships in Leymus Hochst. Hereditas. 2001;135(2–3):247–53.
CAS
PubMed
Google Scholar
Alix K, Gerard PR, Schwarzacher T, Heslop-Harrison JS. Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann Bot. 2017;120:184–94.
Article
Google Scholar
Shiferaw B, Smale M, Braun HJ, Duveiller E, Reynolds M, Muricho G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013;5(3):291–317.
Article
Google Scholar
Kishii M, Nagaki K, Tsujimoto H, Sasakuma T. Exclusive localization of tandem repetitive sequences in subtelomeric heterochromatin regions of Leymus racemosus (Poaceae, Triticeae). Chromosom Res. 1999;7(7):519–29.
Article
CAS
Google Scholar
Lukaszewski AJ, Lapinski B, Rybka K. Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgressions in wheat. Cytogenet Genome Res. 2005;109(1–3):373–7.
Article
CAS
PubMed
Google Scholar
Zhang P, Li W, Friebe B, Gill BS. The origin of a "zebra" chromosome in wheat suggests nonhomologous recombination as a novel mechanism for new chromosome evolution and step changes in chromosome number. Genetics. 2008;179(3):1169–77.
Article
PubMed
PubMed Central
Google Scholar
Zhang L, Liu D, Yan Z, Zheng Y. Alien DNA introgression and wheat DNA rearrangements in a stable wheat line derived from the early generation of distant hybridization. Sci China C Life Sci. 2005;48(5):424–33.
Article
CAS
PubMed
Google Scholar
Garg M, Elamein HM, Tanaka H, Tsujimoto H. Preferential elimination of chromosome 1D from homoeologous group-1 alien addition lines in hexaploid wheat. Genes Genet Syst. 2007;82(5):403–8.
Article
CAS
PubMed
Google Scholar
Gorafi YS, Eltayeb AE, Tsujimoto H. Alteration of wheat vernalization requirement by alien chromosome-mediated transposition of MITE. Breed Sci. 2016;66(2):181–90.
Article
PubMed
PubMed Central
Google Scholar
Gernand D, Rutten T, Varshney A, Rubtsova M, Prodanovic S, Bruss C, Kumlehn J, Matzk F, Houben A. Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell. 2005;17(9):2431–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishii T, Ueda T, Tanaka H, Tsujimoto H. Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: pearl millet chromosome dynamics in hybrid embryo cells. Chromosom Res. 2010;18(7):821–31.
Article
CAS
Google Scholar
Sanei M, Pickering R, Kumke K, Nasuda S, Houben A. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci U S A. 2011;108(33):E498–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wicker T, Guyot R, Yahiaoui N, Keller B. CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol. 2003;132(1):52–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fedoroff NV. Molecular genetics and epigenetics of CACTA elements. Methods Mol Biol. 2013;1057:177–92.
Article
CAS
PubMed
Google Scholar
Sergeeva EM, Salina EA, Adonina IG, Chalhoub B. Evolutionary analysis of the CACTA DNA-transposon Caspar across wheat species using sequence comparison and in situ hybridization. Mol Gen Genomics. 2010;284(1):11–23.
Article
CAS
Google Scholar
Langdon T, Jenkins G, Hasterok R, Jones RN, King IP. A high-copy-number CACTA family transposon in temperate grasses and cereals. Genetics. 2003;163(3):1097–108.
CAS
PubMed
PubMed Central
Google Scholar
Miura A, Kato M, Watanabe K, Kawabe A, Kotani H, Kakutani T. Genomic localization of endogenous mobile CACTA family transposons in natural variants of Arabidopsis thaliana. Mol Gen Genomics. 2004;270(6):524–32.
Article
CAS
Google Scholar
Subbarao GV, Ban T, Kishii M, Ito O, Samejima H, Wang HY, Pearse SJ, Gopalakrishnan S, Nakahara K, Tsujimoto H, Berry W. Can biological nitrification inhibition (BNI) genes from perennial Leymus racemosus (Triticeae) combat nitrification in wheat farming? Plant Soil. 2007;299:55–64.
Article
CAS
Google Scholar
Subbarao GV, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara K, Lascano C, Berry WL. Biological nitrification inhibition (BNI) - is it a widespred phenomenon? Plant Soil. 2007;294:15–9.
Article
Google Scholar
Almeida NF, Trindade Leitao S, Caminero C, Torres AM, Rubiales D, Vaz Patto MC. Transferability of molecular markers from major legumes to Lathyrus spp. for their application in mapping and diversity studies. Mol Biol Rep. 2014;41(1):269–83.
Article
CAS
PubMed
Google Scholar
Xiao Y, Xia W, Ma J, Mason AS, Fan H, Shi P, Lei X, Ma Z, Peng M. Genome-wide identification and transferability of microsatellite markers between Palmae species. Front Plant Sci. 2016;7:1578.
PubMed
PubMed Central
Google Scholar
Zeng D, Luo J, Li Z, Chen G, Zhang L, Ning S, Yuan Z, Zheng Y, Hao M, Liu D. High transferability of Homoeolog-specific markers between bread wheat and newly synthesized Hexaploid wheat lines. PLoS One. 2016;11(9):e0162847.
Article
PubMed
PubMed Central
Google Scholar
da Silva RA, Souza G, Lemos LS, Lopes UV, Patrocinio NG, Alves RM, Marcellino LH, Clement D, Micheli F, Gramacho KP. Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae). PLoS One. 2017;12(2):e0170799.
Article
PubMed
PubMed Central
Google Scholar
Baum BR, Edwards T, Johnson DA. Diversity within the genus Elymus (Poaceae: Triticeae) II: analyses of variation within 5S nrDNA restrict membership in the genus to species with StH genomes. Mol Gen Genomics. 2016;291(1):217–25.
Article
CAS
Google Scholar
Wu X, Larson SR, Hu Z, Palazzo AJ, Jones TA, Wang RR, Jensen KB, Chatterton NJ. Molecular genetic linkage maps for allotetraploid Leymus wildryes (Gramineae: Triticeae). Genome. 2003;46(4):627–46.
Article
CAS
PubMed
Google Scholar
Wang RR, Zhang JY, Lee BS, Jensen KB, Kishii M, Tsujimoto H. Variations in abundance of 2 repetitive sequences in Leymus and Psathyrostachys species. Genome. 2006;49(5):511–9.
Article
CAS
PubMed
Google Scholar
Kishii M. Production of wheat-Leymus racemosus translocation lines. In: Electronic Wheat Information Service, vol. Vol. 111: eWIS; 2011. p. 11–3.
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32(4):1363–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan PP, Lowe TM. GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res. 2009;37(Database issue):D93–7.
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28(8):1086–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, Yabana M, Harada M, Nagayasu E, Maruyama H, et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 2014;24(8):1384–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oono Y, Kobayashi F, Kawahara Y, Yazawa T, Handa H, Itoh T, Matsumoto T. Characterisation of the wheat (Triticum aestivum L.) transcriptome by de novo assembly for the discovery of phosphate starvation-responsive genes: gene expression in pi-stressed wheat. BMC Genomics. 2013;14:77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
International Wheat Genome Sequencing C. a chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345(6194):1251788.
Article
Google Scholar