Bee G, Chevillon P, Bonneau M. Entire male pig production in Europe. Anim Prod Sci. 2015;55:1347–59.
Google Scholar
Patterson RLS. 5alpha-androst-16-ene-3-one: - Compound responsible for taint in boar fat. J Sci Food Agric 1968;19(31).
Vold E. Fleischproduktionseigenschaften bei ebern und kastraten. Meldinger fra Norges Landbrukshøgskole. 1970;49:1–25.
Google Scholar
Jensen MT, Cox RP, Jensen BB. 3-methylindole (skatole) and indole production by mixed populations of pig faecal bacteria. Appl Environ Microbiol. 1995;61(8):3180–4.
CAS
PubMed
PubMed Central
Google Scholar
Hansson KE, Lundstrom K, Fjelkner-Modig S, Persson J. The importance of androstenone and skatole for boar taint. Swed J Agric Res. 1980;10:167–73.
CAS
Google Scholar
Babol J, Zamaratskaia G, Juneja RK, Lundstr”m K: the effect of age on distribution of skatole and indole levels in entire male pigs in four breeds: Yorkshire, landrace, Hampshire and Duroc. Meat Sci 2004, 67:351–358.
Grindflek E, Meuwissen THE, Aasmundstad T, Hamland H, Hansen MH, Nome T, Kent M, Torjesen P, Lien S. Revealing genetic relationships between compounds affecting boar taint and reproduction in pigs. J Anim Sci. 2011;89(3):680–92.
Article
CAS
PubMed
Google Scholar
Tuomola M, Vahva M, Kallio H. High-performance liquid chromatography determination of skatole and indole levels in pig serum, subcutaneous fat and submaxillary salivary glands. Journal of agricultur. Food Chem. 1996;44:1265–70.
Article
CAS
Google Scholar
Zamaratskaia G, Babol J, Andersson H, Lundstr”m K. Plasma skatole and androstenone levels in entire male pigs and relationship between boar taint compounds, sex steroids and thyroxine at various ages. Livest Prod Sci. 2004;87:91–8.
Doran E, Whittington FM, Wood JD, McGivan JD. Cytochrome P450IIE1 (CYP2E1) is induced by skatole and this induction is blocked by androstenone in isolated pig hepatocytes. Chem Biol Interact. 2002;140(1):81–92.
Article
CAS
PubMed
Google Scholar
Chen G, Cue RA, Lundstrom K, Wood JD, Doran O. Regulation of CYP2A6 protein expression by skatole, indole and testicular steroids in primary cultured pig hepatocytes. Drug Metab Dispos. 2008;36(1):56–60.
Article
PubMed
Google Scholar
Rasmussen MK, Zamaratskaia G, Ekstrand B. Gender-related differences in cytochrome P450 in porcine liver - implication for activity, expression and inhibition by testicular steroids. Reprod Domest Anim. 2011;46(4):616–23.
Article
CAS
PubMed
Google Scholar
Strathe AB, Velander I, Mark T, Ostersen T, Hansen C, Kadarmideen H. Genetic parameters for male fertility and its relationship to skatole and androstenone in Danish landrace boars. J Anim Sci. 2013;91(10):4659–68.
Article
CAS
PubMed
Google Scholar
Merks JWM, Hanenberg EHAT, Bloemhof S, Knol EF. Genetic opportunities for pork production without castration. Anim Welf. 2009;18:539–44.
CAS
Google Scholar
Windig JJ, Mulder HA, Ten Napel J, Knol EF, Mathur PK, Crump RE. Genetic parameters for androstenone, skatole, indole, and human nose scores as measures of boar taint and their relationship with finishing traits. J Anim Sci. 2012;90(7):2120–9.
Article
CAS
PubMed
Google Scholar
Strathe AB, Velander IH, Mark T, Kadarmideen HN. Genetic parameters for androstenone and skatole as indicators of boar taint and their relationship to production and litter size traits in Danish landrace. J Anim Sci. 2013;91(6):2587–95.
Article
CAS
PubMed
Google Scholar
Rostellato R, Bonfatti V, Larzul C, Bidanel JP, Carnier P. Estimates of genetic parameters for content of boar taint compounds in adipose tissue of intact males at 160 and 220 days of age. J Anim Sci. 2015;93(9):4267–76.
Article
CAS
PubMed
Google Scholar
Mercat MJ, Prunier A, Muller N, Hassenfratz C, Larzul C. Relationship between sperm production and boar taint risk of purebred or crossbred entire offspring. In: 66th Annual Meeting of the European Federation of Animal Science (EAAP). Warsaw: Wageningen Academic Publishers; 2015.
Google Scholar
Parois SP, Prunier A, Mercat MJ, Merlot E, Larzul C. Genetic relationships between measures of sexual development, boar taint, health, and aggressiveness in pigs. J Anim Sci. 2015;93(8):3749–58.
Article
CAS
PubMed
Google Scholar
Haberland AM, Luther H, Hofer A, Tholen E, Simianer H, Lind B, Baes C. Efficiency of different selection strategies against boar taint in pigs. Animal. 2014;8(1):11–9.
Article
CAS
PubMed
Google Scholar
Xue J, Dial GD. Raising intact male pigs for meat: detecting and preventing boar taint. Swine Health and Production. 1997;5(4):151–8.
Google Scholar
Lukic B, Pong-Wong R, Rowe SJ, De Koning DJ, Velander I, Haley CS, Archibald AL, Woolliams JA. Efficiency of genomic prediction for boar taint reduction in Danish landrace pigs. Anim Genet. 2015;46(6):607–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Große-Brinkhaus C, Storck LC, Frieden L, Neuhoff C, Schellander K, Looft C, Tholen E. Genome-wide association analyses for boar taint components and testicular traits revealed regions having pleiotropic effects. BMC Genet. 2015;16:36.
Article
PubMed
PubMed Central
Google Scholar
Lee GJ, Archibald AL, Law AS, Lloyd S, Wood J, Haley CS. Detection of quantitative trait loci for androstenone, skatole and boar taint in a cross between large white and Meishan pigs. Anim Genet. 2005;36(1):14–22.
Article
CAS
PubMed
Google Scholar
Quintanilla R, Demeure O, Bidanel JP, Milan D, Iannuccelli N, Amigues Y, Gruand J, Renard C, Chevalet C, Bonneau M. Detection of quantitative trait loci for fat androstenone levels in pigs. JAnim Sci. 2003;81(2):385–94.
CAS
Google Scholar
Varona L, Vidal O, Quintanilla R, Gil M, Sánchez A, Folch JM, Hortos M, Ruis MA, Amills M, Noguera JL. Bayesian analysis of quantitative trait loci for boar taint in a landrace outbred population. J Anim Sci. 2005;83:301–7.
Article
CAS
PubMed
Google Scholar
Duijvesteijn N, Knol EF, Merks JW, Crooijmans RP, Groenen MA, Bovenhuis H, Harlizius B. A genome-wide association study on androstenone levels in pigs reveals a cluster of candidate genes on chromosome 6. BMC Genet. 2010;11:42.
Article
PubMed
PubMed Central
Google Scholar
Duijvesteijn N, Knol EF, P. B: boar taint in entire male pigs: a GWAS for direct and indirect genetic effects on androstenone. J Anim Sci 2014.
Gregersen VR, Conley LN, Sørensen KK, Guldbrandtsen B, Velander IH, Bendixen C. Genome-wide association scan and phased haplotype construction for quantitative trait loci affecting boar taint in three pig breeds. BMC Genomics. 2012;13:22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rowe SJ, Karacaören B, de Koning DJ, Lukic B, Hastings-Clark N, Velander I, Haley CS, Archibald AL. Analysis of the genetics of boar taint reveals both single SNPs and regional effects. BMC Genomics. 2014;15:424.
Article
PubMed
PubMed Central
Google Scholar
Grindflek E, Lien S, Hamland H, Hansen MH, Kent M, van Son M, Meuwissen TH. Large scale genome-wide association and LDLA mapping study identifies QTLs for boar taint and related sex steroids. BMC Genomics. 2011;12:362.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramos AM, Duijvesteijn N, Knol EF, Merks JW, Bovenhuis H, Crooijmans RP, Groenen MA, Harlizius B. The distal end of porcine chromosome 6p is involved in the regulation of skatole levels in boars. BMC Genet. 2011;12:35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lanza DL, Yost GS. Selective dehydrogenation/oxidation of 3-methylindole by cytochrome P450 enzymes. Drug Metab Dispos. 2001;29(7):950–3.
CAS
PubMed
Google Scholar
Ratti A, Fallini C, Colombrita C, Pascale A, Laforenza U, Quattrone A, Silani V. Post-transcriptional regulation of neuro-oncological ventral antigen 1 by the neuronal RNA-binding proteins ELAV. J Biol Chem. 2008;283(12):7531–41.
Article
CAS
PubMed
Google Scholar
Villate O, Turatsinze JV, Mascali LG, Grieco FA, Noqueira TC, Cunha DA, Nardelli TR, Sammeth M, Salunkhe VA, Esquerra JL, et al. Nova1 is a master regulator of alternative splicing in pancreatic beta cells. Nucleic Acids Res. 2014;42(18):11818–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin JC, Chi YL, Peng HY, Lu YH. RBM4-Nova1-SRSF6 splicing cascade modulates the development of brown adipocytes. Biochim Biophys Acta. 2016;1859(11):1368–79.
Article
CAS
PubMed
Google Scholar
Farasat S, Wei M-H, Herman M, Liewehr DJ, Steinberg SM, Bale SJ, Fleckman P, Toro JR. Novel transglutaminase-1 mutations and genotype-phenotype investigations of 104 patients with autosomal recessive congenital ichthyosis in the USA. J Med Genet. 2009;46:103–11.
Article
CAS
PubMed
Google Scholar
Herman ML, Farasat S, Steinbach PJ, Wei MH, Toure O, Fleckman P, Blake P, Bale SJ, Toro JR. Transglutaminase-1 gene mutations in autosomal recessive congenital ichthyosis: summary of mutations (including 23 novel) and modeling of TGase-1. Hum Mutat. 2009;30(4):537–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dermitzakis ET, Reymond A, Antonarakis SE. Conserved non-genic sequences - an unexpected feature of mammalian genomes. Nat Rev Genet. 2005;6:151–7.
Article
PubMed
Google Scholar
St. Laurent G, Vyatkin Y, Kapranov P. Dark matter RNA illuminates the puzzle of genome-wide association studies. BMC Med. 2014;12:97.
Article
PubMed
PubMed Central
Google Scholar
Cabili MNTC, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL. Integrative annotation of human large intergenic non-coding RNAs reveals global properties and specific subclasses. Genes and Development. 2011;25:1915–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai M-C, Hung T, Argani P, Rinn JL, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai M-C, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorodkin J, Hofacker IL. From structure prediction to genomic screens for novel non-coding RNAs. PLoS Comput Biol. 2011;7(8)
Anthon C, Tafer H, Havgaard JH, Thomsen B, Hedegaard J, Seemann SE, Pundhir S, Kehr S, Bartschat S, Nielsen M, et al. Structured RNAs and synteny regions in the pig genome. BMC Genomics. 2014;15:459.
Article
PubMed
PubMed Central
Google Scholar
Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81.
Article
CAS
PubMed
Google Scholar
Cullen SP, Brunet M, Martin SJ. Granzymes in cancer and immunity. Cell Death Differ. 2010;17:616–23.
Article
CAS
PubMed
Google Scholar
Mellor AL, Munn DH. Tryptophan catabolism and regulation of adaptive immunity. J Immunol. 2003;170:5809–13.
Article
CAS
PubMed
Google Scholar
Lindner S, Dahlke K, Sontheimer K, Hagn M, Kaltenmeier C, Barth TFE, Beyer T, Reister F, Fabricius D, Lotfi R, et al. Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. Cancer Res. 2013;73(8):2468–79.
Article
CAS
PubMed
Google Scholar
Taylor MW, Feng G. Relationship between interferon-ψ, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 1991;5:2516.
CAS
PubMed
Google Scholar
Scales SJ, Hesser BA, Masuda ES, Scheller RH. Amisyn, a novel syntaxin-binding protein that may regulate SNARE complex assembly. J Biol Chem. 2002;277:28271–9.
Article
CAS
PubMed
Google Scholar
Kang JS, Park H-J, Yoon S. Analysis of gene expression modulated by Indole-3-carbinol in Dimethylbenz[a]anthracene-induced rat mammary carcinogenesis. Molecular and Cellular Toxicology. 2009;5(3):222–9.
Google Scholar
Tuomola M, Harpio R, Knuuttila P, Mikola H, L›vgren T: time-resolved fluoroimmunoassay for the measurement of androstenone in porcine serum and fat samples. Journal of agricultural food chemistry 1997, 45:3529–3534.
Andresen Ø. Development of radioimunoassay for 5alpha-adrost-16-en-3-one in pig peripheral plasma. Acta endochrinologia. 1974;76:377–87.
CAS
Google Scholar
Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan D, Megens HJ, et al. Analysis of pig genomes provide insight into porcine demography and evolution. Nature. 2012;491(7424):393–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead BSS. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li HHB, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
Google Scholar
Garrison EMG. Haplotype-based variant detection from short-read sequencing. In: arXiv:12073907; 2012.
Google Scholar
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flicek P, Cunningham F. The Ensembl variant effect predictor. Genome Biol. 2016;17:122.
Article
PubMed
PubMed Central
Google Scholar
Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coordinators NR. Database resources of the National Center for biotechnology information. Nucleic Acids Res. 2017;45(D1):D12–7.
Article
Google Scholar
Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing data inference for whole genome association studies using localized haplotype clustering. Am J Hum Genet. 2007;81:1084–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barrett JCFB, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–5.
Article
CAS
PubMed
Google Scholar
Gilmour A, Cullis B, Welham R, Thompson R. ASREML reference manual. Sydney: New South Wales Department of Primary Industries; 2001.
Google Scholar
Gao X, Starmer J, Martin ER. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol. 2008;32(4):361–9.
Article
PubMed
Google Scholar