Wright S. Evolution and the genetics of populations, volume 3: experimental results and evolutionary deductions. vol. 3rd ed. Chicago, USA: University of Chicago press; 1984.
Ellstrand NC, Elam DR. Population genetic consequences of small population size: implications for plant conservation. Annual review of Ecology and Systematics 1993;24:217–242.
Article
Google Scholar
DeSalle R, Amato G. The expansion of conservation genetics. Nat Rev Genet. 2004;5(9):702–12.
Article
CAS
PubMed
Google Scholar
Yumnam B, Jhala YV, Qureshi Q, Maldonado JE, Gopal R, Saini S, et al. Prioritizing Tiger Conservation through Landscape Genetics and Habitat Linkages. PLoS One. 2014;9(11):e111207.
Article
PubMed
PubMed Central
Google Scholar
Qureshi Q, Saini S, Basu P, Gopal R, Raza R, Jhala Y. Connecting Tiger Populations for Long-term Conservation. In: Dehradun: National Tiger Conservation Authority & Wildlife Institute of India. 2014.
Google Scholar
Hartt L. Biodiversity: saving Florida panther makes sense. Nature. 2005;438(7065):156–6.
Johnson WE, Onorato DP, Roelke ME, Land ED, Cunningham M, Belden RC, et al. Genetic restoration of the Florida panther. Science. 2010;329(5999):1641–5.
Article
CAS
PubMed
Google Scholar
Check E. Conservation biology: The tiger’s retreat. Nature. 2006;441(7096):927–30.
Article
CAS
PubMed
Google Scholar
Gopal R, Qureshi Q, Bhardwaj M, Jagadish Singh RK, Jhala YV. Evaluating the status of the endangered tiger Panthera tigris and its prey in Panna Tiger Reserve, Madhya Pradesh India. Oryx. 2010;44(03):383–9.
Article
Google Scholar
IUCN/SSC: Guidelines for Reintroductions and Other Conservation Translocations. Version 1.0. In., vol. 8. Gland, Switzerland: IUCN Species Survival Commission; 2013: 57
Piggott MP, Taylor AC. Remote collection of animal DNA and its applications in conservation management and understanding the population biology of rare and cryptic species. Wildl Res. 2003;30(1):1–13.
Article
Google Scholar
Foran DR, Crooks KR, Minta SC. Species identification from scat: an unambiguous genetic method. Wildlife Society Bulletin. 1997;25:835–839.
Google Scholar
Ferri G, Alu M, Corradini B, Licata M, Beduschi G. Species identification through DNA “barcodes”. Genet Test Mol Biomarkers. 2009;13(3):421–6.
Article
CAS
PubMed
Google Scholar
Wadley JJ, Austin JJ, Fordham DA. Rapid species identification of eight sympatric northern Australian macropods from faecal-pellet DNA. Wildl Res. 2013;40(3):241–9.
Article
Google Scholar
Mukherjee N, Mondol S, Andheria A, Ramakrishnan U. Rapid multiplex PCR based species identification of wild tigers using non-invasive samples. Conservation Genetics. 2007;8(6):1465–70.
Article
CAS
Google Scholar
Bhagavatula J, Singh L. Genotyping faecal samples of Bengal tiger Panthera tigris tigris for population estimation: a pilot study. BMC Genet. 2006;7(1):48.
Article
PubMed
PubMed Central
Google Scholar
Mondol S, Navya R, Athreya V, Sunagar K, Selvaraj VM, Ramakrishnan U. A panel of microsatellites to individually identify leopards and its application to leopard monitoring in human dominated landscapes. BMC Genet. 2009;10(1):79.
Article
PubMed
PubMed Central
Google Scholar
Kohn MH, Wayne RK. Facts from feces revisited. Trends Ecol Evol. 1997;12(6):223–7.
Article
CAS
PubMed
Google Scholar
Moore SS, Sargeant LL, King TJ, Mattick JS, Georges M, Hetzel DJS. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics. 1991;10(3):654–60.
Article
CAS
PubMed
Google Scholar
Davison A, Birks JDS, Brookes RC, Braithwaite TC, Messenger JE. On the origin of faeces: morphological versus molecular methods for surveying rare carnivores from their scats. J Zool. 2002;257(2):141–3.
Article
Google Scholar
Bhavanishankar M, Reddy PA, Gour DS, Shivaji S. Validation of non-invasive genetic identification of two elusive, sympatric, sister-species–tiger (Panthera tigris) and leopard (Panthera pardus). Curr Sci. 2013;104(8):1063.
CAS
Google Scholar
Joshi A, Vaidyanathan S, Mondol S, Edgaonkar A, Ramakrishnan U. Connectivity of tiger (Panthera tigris) populations in the human-influenced forest mosaic of central India. 2013.
Google Scholar
Sharma S, Dutta T, Maldonado JE, Wood TC, Panwar HS, Seidensticker J. Spatial genetic analysis reveals high connectivity of tiger (Panthera tigris) populations in the Satpura–Maikal landscape of Central India. Ecology Evolution. 2013;3(1):48–60.
Article
PubMed Central
Google Scholar
Dutta T, Sharma S, Maldonado JE, Wood TC, Panwar HS, Seidensticker J. Fine‐scale population genetic structure in a wide‐ranging carnivore, the leopard (Panthera pardus fusca) in central India. Diversity Distributions. 2013;19(7):760–71.
Article
Google Scholar
Mondol S, Karanth KU, Ramakrishnan U. Why the Indian subcontinent holds the key to global tiger recovery. 2009.
Google Scholar
Jullien N: Amplifx Version 1.3. 6. URL http://crn2m.univ-mrs.fr/AmplifX?lang=en 2005.
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13(1):134.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reed JZ, Tollit DJ, Thompson PM, Amos W. Molecular scatology: the use of molecular genetic analysis to assign species, sex and individual identity to seal faeces. Mol Ecol. 1997;6(3):225–34.
Article
CAS
PubMed
Google Scholar