Bewly JD. Seed germination and dormancy. Plant Cell. 1997;9:1055–66.
Article
Google Scholar
Li B, Foley ME. Genetic and molecular control of Seed Dormancy. Trends Plant Sci. 1997;2:384–9.
Article
Google Scholar
Baskin JM, Baskin CC. Classification system for seed dormancy. Seed Sci Res. 2004;14:1–16.
Google Scholar
Baskin CC, Baskin JM. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego: Academic; 1998.
Google Scholar
Veasey EA, Karasawa MGM, Santos PP, Rosa MS, Mamanie E, Oliveira GCX. Variation in the loss of seed dormancy during after-ripening of wild and cultivated Rice Species. Ann Bot. 2004;94:875–82.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harlan JR, de Wet JMJ, Price EG. Comparative evolution of cereals. Evolution. 1973;27:311–25.
Article
Google Scholar
Gubler F, Millar AA, Jacobsen JV. Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol. 2005;8:183–7.
Article
CAS
PubMed
Google Scholar
Bewley JD, Black M. Seeds- physiology of development and germination. 2nd ed. New York: Plenum Press; 1994.
Google Scholar
Roberts EH. Dormancy of rice seed. I. The distribution of dormancy periods. J Exp Bot. 1961;13:319–39.
Article
Google Scholar
Roberts EH. Dormancy in rice seed. III. The influence of temperature, moisture and gaseous environment. J Exp Bot. 1962;13:75–94.
Article
CAS
Google Scholar
Anderson JA, Sorrells ME, Tanksley SD. RFLP analysis of genomic regions associated with resistance to pre-harvest sprouting in wheat. Crop Sci. 1993;33:453–9.
Article
CAS
Google Scholar
Ikehashi H. Induction and test of dormancy of rice seeds by temperature condition during maturation. Japan J Breed. 1972;22:209–16.
Article
Google Scholar
Takahashi N. Inheritance of seed germination and dormancy. In: Science of rice plant: genetics. Tokyo: Food and Agric Policy Res Center; 1997. p. 348–59.
Google Scholar
Roberts EH. Dormancy in rice seed. IV. Varietal responses to storage and germination temperatures. J Exp Bot. 1965;16:341–9.
Article
Google Scholar
Cohn MA, Hughes JA. Seed dormancy in red rice (Oryza sativa). I. Effect of temperature on dry-afterripening. Weed Sci. 1981;29:402–4.
Google Scholar
Koornneef M, Bentsink L, Hilhorst H. Seed dormancy and germination. Curr Opin Plant Biol. 2002;5:33–6.
Article
CAS
PubMed
Google Scholar
Finkelstein RR. The role of hormones during seed development and Germination. In: Davies PJ, editor. Plant Hormones – biosynthesis, signal transduction, action! Dordrecht: The Netherlands: Kluwer Academic Publishers; 2004. p. 513–37.
Google Scholar
Rohde A, Kurup S, Holdsworth M. ABI3 emerges from seed. Trends Plant Sci. 2000;5:418–9.
Article
CAS
PubMed
Google Scholar
Monke G, Altschmied L, Tewes A, Reidt W, Mock HP, Baumlein H, et al. Seed-specific transcription factors ABI3 and FUS3: molecular interaction with DNA. Planta. 2004;219:158–66.
Article
PubMed
Google Scholar
Gualberti G, Papi M, Bellucci L, Ricci I, Bouchez D, Camilleri C, et al. Mutations in the Dof zinc finger genes DAG2 and DAG1 influence with opposite effects germination of Arabidopsis seeds. Plant Cell. 2002;14:1253–63.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu Y, Koornneef M, Soppe WJ. The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell. 2007;19:433–44.
Article
PubMed Central
PubMed
Google Scholar
Bentsink L, Jowett J, Hanhart CJ, Koornneef M. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci U S A. 2006;103:17042–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zheng J, Chen FY, Wang Z, Cao H, Li X, Deng X, et al. A novel role for histone methyltransferase KYP⁄SUVH4 in the control of Arabidopsis primary seed dormancy. New Phytol. 2012;193:605–16.
Article
CAS
PubMed
Google Scholar
Xiang Y, Nakabayashi K, Ding J, He F, Bentsink L, Soppe WJJ. REDUCED DORMANCY5 Encodes a Protein Phosphatase 2C that Is Required for Seed Dormancy in Arabidopsis. Plant Cell. 2014;26:4362–75.
Article
PubMed Central
CAS
PubMed
Google Scholar
Footitt S, Müller K, Kermode AR, Finch-Savage WE. Seed dormancy cycling in Arabidopsis: chromatin remodeling and regulation of DOG1 in response to seasonal environmental signals. Plant J. 2015;81:413–25.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gu XY, Foley ME, Horvath DP, Anderson JV, Feng J, Zhang L, et al. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy Red rice. Genet. 2011;189:1515–24.
Article
CAS
Google Scholar
Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, et al. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci U S A. 2010;107:5792–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lin SY, Sasaki T, Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet. 1998;96:997–1003.
Article
CAS
Google Scholar
Dong Y, Tsuzuki E, Kamiunten H, Terao H, Lin D, Matsuo M, et al. Identification of quantitative trait loci associated with pre-harvest sprouting resistance in rice (Oryza sativa L.). Field crops Res. 2003;81:133–9.
Article
Google Scholar
Gu XY, Kianian SF, Foley ME. Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa). Genet. 2004;166:1503–16.
Article
CAS
Google Scholar
Wan JM, Cao YJ, Wang CM, Ikehashi H. Quantitative trait loci associated with seed dormancy in rice. Crop Sci. 2005;45:712–6.
Article
CAS
Google Scholar
Jiang L, Cao YJ, Wang CM, Zhai HQ, Wan JM, Yoshimura A. Detection and analysis of QTL for seed dormancy in rice (Oryza sativa L.) using RIL and CSSL population. Acta Genet Sin. 2003;30:453–8.
CAS
PubMed
Google Scholar
Li W, Xu L, Bai X, Xing Y. Quantitative trait loci for seed dormancy in rice. Euphytica. 2010;178:427–35.
Article
Google Scholar
Gu XY, Turnipseed EB, Foley ME. The qSD12 locus controls offspring tissue-imposed seed dormancy in rice. Genet. 2008;179:2263–73.
CAS
Google Scholar
Ye H, Beighley DH, Feng J, Gu XY. Genetic and physiological characterization of two clusters of quantitative trait loci associated with seed dormancy and plant height in rice. G3 (Bethesda). 2013;3:323–31.
Article
CAS
Google Scholar
Borevitz JO, Nordborg M. The impact of genomics on the study of natural variation in Arabidopsis. Plant Physiol. 2003;132:718–25.
Article
PubMed Central
CAS
PubMed
Google Scholar
Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9:29.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Asimit J, Zeggini E. Rare variant association analysis methods for complex traits. Annu Rev Genet. 2010;44:293–308.
Article
CAS
PubMed
Google Scholar
Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet. 2011;13:135–45.
Article
PubMed Central
Google Scholar
Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. Rare variants create synthetic genome-wide associations. PLoS Biol. 2010;8(1):e1000294.
Article
PubMed Central
PubMed
Google Scholar
Wray NR, Purcell SM, Visscher PM. Synthetic associations created by rare variants do not explain most GWAS results. PLoS Biol. 2011;9(1):e1000579.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li Y, Huang Y, Bergelson J, Nordborg M, Borevitz JO. Association mapping of local climate sensitive quantitative trait loci in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2010;107:21199–204.
Article
PubMed Central
CAS
PubMed
Google Scholar
Feng T, Zhu X. Detecting rare variants. Methods Mol Biol. 2012;850:453–64.
Article
PubMed
Google Scholar
Yu J, Pressoir G, Briggs WH, Vroh BI, Yamasaki M, Doebley JF, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38:203–8.
Article
CAS
PubMed
Google Scholar
Listgarten J, Lippert C, Kadie CM, Davidson RI, Eskin E, Heckerman D. Improved linear mixed models for genome-wide association studies. Nat Methods. 2012;9:525–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet. 2010;42:961–7.
Article
CAS
PubMed
Google Scholar
Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in oryza sativa. Nat Commun. 2011;2:267. doi:10.1038/ncomms1467.
Article
Google Scholar
Norton GJ, Douglas A, Lahner B, Yakubova E, Guerinot ML, Pinson SRM, et al. Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites. PLoS One. 2014;9(2):e89685.
Article
PubMed Central
PubMed
Google Scholar
Eizenga GC, Ali ML, Bryant RJ, Yeater KM, McClung AM, McCouch SR. Registration of the ‘Rice Diversity Panel 1’ for genome-wide association studies. J Plant Registrations. 2014;8:109–16.
Article
Google Scholar
Yano R, Takebayashi Y, Nambara E, Kamiya Y, Seo M. Combining association mapping and transcriptomics identify HD2B histone deacetylase as a genetic factor associated with seed dormancy in Arabidopsis thaliana. Plant J. 2013;74:815–28.
Article
CAS
PubMed
Google Scholar
Mather KA, Caicedo AL, Polato NR, Olsen KM, McCouch S, Purugganan MD. The extent of linkage disequilibrium in rice (Oryza sativa L.). Genet. 2007;177:2223–32.
Article
CAS
Google Scholar
McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, et al. Genome-wide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci U S A. 2009;106:12273–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, et al. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta. 2004;219:479–88.
Article
CAS
PubMed
Google Scholar
Cadman CS, Toorop PE, Hilhorst HW, Finch-Savage WE. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J. 2006;46:805–22.
Article
CAS
PubMed
Google Scholar
Sakai M, Sakamoto T, Saito T, Matsuoka M, Tanaka H, Kobayashi M. Expression of novel rice gibberellin 2-oxidase gene is under homeostatic regulation by biologically active gibberellins. J Plant Res. 2003;116:161–4.
CAS
PubMed
Google Scholar
Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, et al. Elongated uppermost internode encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell. 2006;18:442–56.
Article
PubMed Central
CAS
PubMed
Google Scholar
Luo A, Qian Q, Yin HF, Liu XQ, Yin CX, Lan Y, et al. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin response in rice. Plant Cell Physiol. 2006;47:181–91.
Article
CAS
PubMed
Google Scholar
Fu J, Liu H, Li Y, Yu H, Li X, Xiao J, et al. Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol. 2011;155:589–602.
Article
PubMed Central
CAS
PubMed
Google Scholar
Finkelstein R, Lynch T. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell. 2000;12:599–609.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gardner HW, Dornbos DLJ, Desjardins A. Hexanal, trans-2-hexenal, and trans-2-nonenal inhibit soybean, Glycine max, seed germination. J Agric Food Chem. 1990;38:1316–20.
Article
CAS
Google Scholar
Chehab EW, Raman G, Walley JW, Perea JV, Banu G, Theg S, et al. Rice HYDROPEROXIDE LYASES with unique expression patterns generate distinct aldehyde signatures in Arabidopsis. Plant Physiol. 2006;141:121–34.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vaidyanathan R, Kuruvilla S, Thomas G. Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice. Plant Sci. 1998;140:21–30.
Article
Google Scholar
Ni J, Colowit P, Mackill D. Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Sci. 2002;42:601–7.
Article
CAS
Google Scholar
Glaszmann JC. Isozymes and classification of Asian rice varieties. Theor Appl Genet. 1987;74:21–30.
Article
CAS
PubMed
Google Scholar
Zhang Q, Maroof M, Lu T, Shen B. Genetic diversity and differentiation of Indica and Japonica rice detected by RFLP analysis. Theor Appl Genet. 1992;83:495–9.
Article
CAS
PubMed
Google Scholar
Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S. Genetic structure and diversity in Oryza sativa L. Genet. 2005;169:1631–8.
Article
CAS
Google Scholar
Alonso-Blanco C, Bentsink L, Hanhart CJ, Vries HBE, Koornneef M. Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genet. 2003;164:711–29.
CAS
Google Scholar
Carrera E, Holman T, Medhurst A, Dietrich D, Footitt S, Theodoulou FL, et al. Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant J. 2008;53:214–24.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ye H, Feng JH, Zhang LH, Zhang JF, Mispan MS, Cao ZQ, et al. Map-based cloning of seed dormancy1–2 identified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice. Plant Physiol. 2015;169:2152–65.
PubMed
Google Scholar
Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, et al. OsSPL14 promotes panicle branching and higher productivity in rice. Nat Genet. 2010;42:545–50.
Article
CAS
PubMed
Google Scholar
Gianinetti A, Vernier P. On the role of abscisic acid in seed dormancy of red rice. J Exp Bot. 2007;58:3449–62. 2007.
Article
CAS
PubMed
Google Scholar
Gubler F, Hughes T, Waterhouse P, Jacobsen J. Regulation of dormancy in barley by blue light and after-ripening: effects on abscisic acid and gibberellin metabolism. Plant Physiol. 2008;147:886–96.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rodriguez MV, Mendiondo GM, Cantoro R, Auge GA, Luna V, Masciarelli O, et al. Expression of seed dormancy in grain sorghum lines with contrasting pre-harvest sprouting behavior involves differential regulation of gibberellin metabolism genes. Plant Cell Physiol. 2012;53:64–80.
Article
CAS
PubMed
Google Scholar
Chen W, Gao Y, Xie W, Gong L, Lu K, Wang W, et al. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet. 2014;46:714–21.
Article
CAS
PubMed
Google Scholar
Zhao H, Yao W, Ouyang Y, Yang W, Gong W, Wang GW, et al. RiceVarMap: a comprehensive database of rice genomic variations. Nucleic Acids Res. 2014. 43 doi: 10.1093/nar/gku894.
Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D, et al. FaST linear mixed models for genome-wide association studies. Nat Methods. 2011;8:833–5.
Article
CAS
PubMed
Google Scholar
Li MX, Yeung JM, Cherny SS, Sham PC. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet. 2012;131:747–56.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gu XY, Kianian SF, Foley ME. Phenotypic selection for seed dormancy introduced a set of adaptive haplotypes from weedy into cultivated rice. Genet. 2005;171:695–704.
Article
CAS
Google Scholar
Cai HW, Morishima H. Genomic regions affecting seed shattering and seed dormancy in rice. Theor Appl Genet. 2000;100:840–6.
Article
CAS
Google Scholar