Wang K, Li M, Hakonarson H: ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38: e164-e164. 10.1093/nar/gkq603.

Article
PubMed
PubMed Central
Google Scholar

San Lucas FA, Wang G, Scheet P, Peng B: Integrated annotation and analysis of genetic variants from next-generation sequencing studies with variant tools. Bioinformatics. 2012, 28: 421-2. 10.1093/bioinformatics/btr667.

Article
CAS
PubMed
Google Scholar

Adzhubei I, Jordan DM, Sunyaev SR: Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013, Chapter 7: Unit 7.20-

Google Scholar

Kumar P, Henikoff S, Ng PC: Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009, 4: 1073-81. 10.1038/nprot.2009.86.

Article
CAS
PubMed
Google Scholar

Kellis M, Wold B, Snyder MP, Bernstein BE, Kundaje A, Marinov GK, et al: Defining functional DNA elements in the human genome. Proc Natl Acad Sci U S A. 2014, 111: 6131-8. 10.1073/pnas.1318948111.

Article
CAS
PubMed
PubMed Central
Google Scholar

Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al: Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012, 22: 1790-7. 10.1101/gr.137323.112.

Article
CAS
PubMed
PubMed Central
Google Scholar

Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J: A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014, 46: 310-5. 10.1038/ng.2892.

Article
CAS
PubMed
PubMed Central
Google Scholar

Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S: Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol. 2010, 6: e1001025-10.1371/journal.pcbi.1001025.

Article
PubMed
PubMed Central
Google Scholar

NCBI: National center for biotechnology information search database. http://www.ncbi.nlm.nih.gov/

Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S, et al: Ensembl 2015. Nucleic Acids Res. 2015, 43 (Database issue): D662-9. 10.1093/nar/gku1010.

Article
PubMed
Google Scholar

Harrow JL, Steward CA, Frankish A, Gilbert JG, Gonzalez JM, Loveland JE, et al: The vertebrate genome annotation browser 10 years on. Nucleic Acids Res. 2014, 42: D771-9. 10.1093/nar/gkt1241.

Article
CAS
PubMed
Google Scholar

Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al: GENCODE: the reference human genome annotation for the ENCODE project. Genome Res. 2012, 22: 1760-74. 10.1101/gr.135350.111.

Article
CAS
PubMed
PubMed Central
Google Scholar

Kanehisa M, Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28: 27-30. 10.1093/nar/28.1.27.

Article
CAS
PubMed
PubMed Central
Google Scholar

Nishimura D: BioCarta. Biotech Softw Internet Rep. 2001, 2: 117-20. 10.1089/152791601750294344.

Article
Google Scholar

Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, et al: PID: the pathway interaction database. Nucleic Acids Res. 2009, 37: D674-9. 10.1093/nar/gkn653.

Article
CAS
PubMed
Google Scholar

Kent JW: Pathway-based analyses. BMC Genet. 2015, 16 Suppl 3: S5-

Google Scholar

Gibson J, Morton NE, Collins A: Extended tracts of homozygosity in outbred human populations. Hum Mol Genet. 2006, 15: 789-95. 10.1093/hmg/ddi493.

Article
CAS
PubMed
Google Scholar

Hildebrandt F, Heeringa SF, Rüschendorf F, Attanasio M, Nürnberg G, Becker C, et al: A systematic approach to mapping recessive disease genes in individuals from outbred populations. PLoS Genet. 2009, 5: e1000353-10.1371/journal.pgen.1000353.

Article
PubMed
PubMed Central
Google Scholar

Browning SR, Thompson EA: Detecting rare variant associations by identity-by-descent mapping in case-control studies. Genetics. 2012, 190: 1521-31. 10.1534/genetics.111.136937.

Article
PubMed
PubMed Central
Google Scholar

Balliu B, Uh HW, Tsonaka R, Boehringer S, Helmer Q, Houwing-Duistermaat JJ: Combining information from linkage and association mapping for next-generation sequencing longitudinal family data. BMC Proc. 2014, 8 (Suppl 1): S34-10.1186/1753-6561-8-S1-S34.

Article
PubMed
PubMed Central
Google Scholar

Lee S, Abecasis GR, Boehnke M, Lin X: Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet. 2014, 95: 5-23. 10.1016/j.ajhg.2014.06.009.

Article
CAS
PubMed
PubMed Central
Google Scholar

Schaid DJ: Genomic similarity and kernel methods I: advancements by building on mathematical and statistical foundations. Hum Hered. 2010, 70: 109-31. 10.1159/000312641.

Article
PubMed
Google Scholar

Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X: Rare variant association testing for sequencing data using the sequence kernel association test (SKAT). Am J Hum Genet. 2011, 89: 82-93. 10.1016/j.ajhg.2011.05.029.

Article
CAS
PubMed
PubMed Central
Google Scholar

Li B, Leal SM: Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet. 2008, 83: 311-21. 10.1016/j.ajhg.2008.06.024.

Article
CAS
PubMed
PubMed Central
Google Scholar

Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, Orho-Melander M, et al: Testing for an unusual distribution of rare variants. PLoS Genet. 2011, 7: e1001322-10.1371/journal.pgen.1001322.

Article
CAS
PubMed
PubMed Central
Google Scholar

Santorico SA, Hendricks AE: Progress in methods for rare variant association. BMC Genet. 2015, 16 Suppl 3: S7-

Google Scholar

Kim T, Wei P: Incorporating ENCODE information into association analysis of whole genome sequencing data. BMC Proc. 2015, 9 (Suppl 8): S34-

Google Scholar

Zhang D, Cui H, Korkin D, Wu Z: Incorporation of protein binding effects into likelihood ratio test for exome sequencing data. BMC Proc. 2015, 9 Suppl 8: S37-

Google Scholar

Ionita-Laza I, Lee S, Makarov V, Buxbaum JD, Lin X: Sequence kernel association tests for the combined effect of rare and common variants. Am J Hum Genet. 2013, 92: 841-53. 10.1016/j.ajhg.2013.04.015.

Article
CAS
PubMed
PubMed Central
Google Scholar

Malzahn D, Friedrichs S, Bickeböller H: Comparing strategies for combined testing of rare and common variants in whole sequence and genome-wide genotype data. BMC Proc. 2015, 9 Suppl 8: S36-

Google Scholar

Genovese CR, Roeder K, Wasserman L: False discovery control with p-value weighting. Biometrika. 2006, 93: 509-24. 10.1093/biomet/93.3.509.

Article
Google Scholar

Roeder K, Wasserman L: Genome-wide significance levels and weighted hypothesis testing. Stat Sci. 2009, 24: 398-413. 10.1214/09-STS289.

Article
PubMed
PubMed Central
Google Scholar

Ho YY, Guan W, Basu S: Powerful association test combining rare variant and gene expression using family data from genetic analysis workshop 19. BMC Proc. 2015, 9 Suppl 8: S33-

Google Scholar

Almasy L, Dyer TD, Peralta JM, Jun G, Wood AR, Fuchsberger C, et al: Data for Genetic Analysis Workshop 18: human whole genome sequence, blood pressure, and simulated phenotypes in extended pedigrees. BMC Proc. 2014, 8 (Suppl 1): S2-10.1186/1753-6561-8-S1-S2.

Article
PubMed
PubMed Central
Google Scholar

Blangero J, Teslovich TM, Sim X, Almeida MA, Jun G, Dyer TD, et al: Omics-squared: human genomic, transcriptomic and phenotypic data for Genetic Analysis Workshop 19. BMC Proc. 2015, 9 Suppl 8: S2-

Google Scholar

Almeida M, Blondell L, Peralta J, Kent JW, Jun G, Teslovich TM, et al: Independent test assessment using the extreme value distribution theory. BMC Proc. 2015, 9 Suppl 8: S32-

Google Scholar

Liu X-Q, Fazio J, Hu PZ, Paterson AD: Identity-by-descent mapping for diastolic blood pressure in unrelated Mexican Americans. BMC Proc. 2015, 9 Suppl 8: S35-

Google Scholar

Patterson N, Price AL, Reich D: Population structure and eigenanalysis. PLoS Genet. 2006, 2: e190-10.1371/journal.pgen.0020190.

Article
PubMed
PubMed Central
Google Scholar

Alexander DH, Novembre J, Lange K: Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19: 1655-64. 10.1101/gr.094052.109.

Article
CAS
PubMed
PubMed Central
Google Scholar

GRC: The Genome Reference Consortium. http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/

The International HapMap Consortium: The international HapMap project. Nature. 2003, 426: 789-96. 10.1038/nature02168.

Article
Google Scholar

Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005, 21: 263-5. 10.1093/bioinformatics/bth457.

Article
CAS
PubMed
Google Scholar

Sikić M, Tomić S, Vlahovicek K: Prediction of protein-protein interaction sites in sequences and 3D structures by random forests. PLoS Comput Biol. 2009, 5 (1): e1000278-10.1371/journal.pcbi.1000278.

Article
PubMed
PubMed Central
Google Scholar

Schifano ED, Epstein MP, Bielak LF, Jhun MA, Kardia SL, Peyser P, et al: SNP set association analysis for familial data. Genet Epidemiol. 2012, 36: 797-810.

PubMed
PubMed Central
Google Scholar

Dudbridge F, Gusnanto A: Estimation of significance thresholds for genome wide association scans. Genet Epidemiol. 2008, 32: 227-34. 10.1002/gepi.20297.

Article
PubMed
PubMed Central
Google Scholar

Almasy L, Blangero J: Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998, 62: 1198-211. 10.1086/301844.

Article
CAS
PubMed
PubMed Central
Google Scholar

Sidak Z: Rectangular confidence regions from means of multivariate normal distributions. J Am Stat Assoc. 1967, 62: 626-33.

Google Scholar

Browning SR, Browning BL: Rapid and accurate haplotype phasing and missing data inference for whole genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007, 81: 1084-97. 10.1086/521987.

Article
CAS
PubMed
PubMed Central
Google Scholar

Chen H, Malzahn D, Balliu B, Li C, Bailey JN: Testing genetic association with rare and common variants in family data. Genet Epidemiol. 2014, 38 (Suppl 1): S37-43. 10.1002/gepi.21823.

Article
PubMed
PubMed Central
Google Scholar

Liu D, Lin X, Ghosh G: Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models. Biometrics. 2007, 63: 1079-88. 10.1111/j.1541-0420.2007.00799.x.

Article
PubMed
PubMed Central
Google Scholar

Rasmussen CE, Williams CKI: Gaussian processes for machine learning. 2006, MIT Press, Cambridge

Google Scholar

Madsen BE, Browning SR: A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet. 2009, 5: e1000384-10.1371/journal.pgen.1000384.

Article
PubMed
PubMed Central
Google Scholar

Chen Y-C, Carter H, Parla J, Kramer M, Goes FS, Pirooznia M, et al: A hybrid likelihood model for sequence-based disease association studies. PLoS Genet. 2013, 9: e1003224-10.1371/journal.pgen.1003224.

Article
CAS
PubMed
PubMed Central
Google Scholar

Davies RB: Algorithm as 155: the distribution of a linear combination of chi-2 random variables. J R Stat Soc: Ser C: Appl Stat. 1980, 29: 323-33.

Google Scholar

Brown MB: A method for combining non-independent, one-sided tests of significance. Biometrics. 1975, 31: 987-92. 10.2307/2529826.

Article
Google Scholar

Lee S, Wu MC, Lin X: Optimal tests for rare variant effects in sequencing association studies. Biostatistics. 2012, 13: 762-75. 10.1093/biostatistics/kxs014.

Article
PubMed
PubMed Central
Google Scholar

Basu S, Pan W: Comparison of statistical tests for disease association with rare variants. Genet Epidemiol. 2011, 35: 606-19. 10.1002/gepi.20609.

Article
PubMed
PubMed Central
Google Scholar