Southwood OI, Kennedy BW: Genetic and environmental trends for litter size in swine. J Anim Sci. 1991, 69 (8): 3177-82.
CAS
PubMed
Google Scholar
Blasco A, Sorensen D, Bidanel JP: Bayesian inference of genetic parameters and selection response for litter size components in pigs. Genetics. 1998, 149 (1): 301-6.
CAS
PubMed
PubMed Central
Google Scholar
Noguera JL, Varona L, Babot D, Estany J: Multivariate analysis of litter size for multiple parities with production traits in pigs: I. Bayesian variance component estimation. J Anim Sci. 2002, 80 (10): 2540-7.
CAS
PubMed
Google Scholar
Noguera JL, Varona L, Babot D, Estany J: Multivariate analysis of litter size for multiple parities with production traits in pigs: II. Response to selection for litter size and correlated response to production traits. J Anim Sci. 2002, 80 (10): 2548-55.
CAS
PubMed
Google Scholar
Roehe R, Kalm E: Estimation of genetic and environmen-tal risk factors associated with pre-weaning mortality in piglets using generalized linear mixed models. J Anim Sci. 2000, 70: 227-40.
Google Scholar
English PR, Smith WJ: Some causes of death in neonatal piglets. Vet Annu. 1995, 15: 95-104.
Google Scholar
Fahmy MH, Holtmann WB, MacIntyre TM, Moxley JE: Evaluation of piglet mortality in 28 two-breed crosses among eight breeds of pig. Anim Prod. 1978, 26: 277-85. 10.1017/S0003356100040873.
Article
Google Scholar
Damgaard LH, Rydhmer L, Løvendahl P, Grandinson K: Genetic parameters for within-litter variation in piglet birth weight and change in within-litter variation during suckling. J Anim Sci. 2003, 81 (3): 604-10.
CAS
PubMed
Google Scholar
Wittenburg D, Guiard V, Teuscher F, Reinsch N: Comparison of statistical models to analyse the genetic effect on within-litter variance in pigs. Animal. 2008, 2 (11): 1559-68. 10.1017/S1751731108002851.
Article
CAS
PubMed
Google Scholar
Chung HY, Lee KT, Jang GW, Choi JG, Hong JG, Kim TH: A genome-wide analysis of the ultimate pH in swine. Genet Mol Res. 2015, 14 (4): 15668-82. 10.4238/2015.December.1.19.
Article
CAS
PubMed
Google Scholar
Bergfelder-Drüing S, Grosse-Brinkhaus C, Lind B, Erbe M, Schellander K, Simianer H, Tholen E: A genome-wide association study in large white and landrace pig populations for number piglets born alive. PLoS One. 2015, 10 (3): e0117468-10.1371/journal.pone.0117468.
Article
PubMed
PubMed Central
Google Scholar
Fan B, Onteru SK, Du ZQ, Garrick DJ, Stalder KJ, Rothschild MF: Genome-wide association study identifies Loci for body composition and structural soundness traits in pigs. PLoS One. 2011, 6: e14726-10.1371/journal.pone.0014726.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brett KE, Ferraro ZM, Yockell-Lelievre J, Gruslin A, Adamo KB: Maternal-fetal nutrient transport in pregnancy pathologies: the role of the placenta. Int J Mol Sci. 2014, 15 (9): 16153-85. 10.3390/ijms150916153.
Article
PubMed
PubMed Central
Google Scholar
Kalhan S, Parimi P: Gluconeogenesis in the fetus and neonate. Semin Perinatol. 2000, 24 (2): 94-106. 10.1053/sp.2000.6360.
Article
CAS
PubMed
Google Scholar
Jansson T, Illsley NP: Osmotic water permeabilities of human placental microvillous and basal membranes. J Membr Biol. 1993, 132: 147-55. 10.1007/BF00239004.
Article
CAS
PubMed
Google Scholar
Johnson LW, Smith CH: Glucose transport across the basal plasma membrane of human placental syncytiotrophoblast. Biochim Biophys Acta. 1985, 815: 44-50. 10.1016/0005-2736(85)90472-9.
Article
CAS
PubMed
Google Scholar
Firth JA, Leach L: Not trophoblast alone: a review of the contribution of the fetal microvasculature to transplacental exchange. Placenta. 1996, 17: 89-96. 10.1016/S0143-4004(96)80001-4.
Article
CAS
PubMed
Google Scholar
Eaton BM, Leach L, Firth JA: Permeability of the fetal villous microvasculature in the isolated perfused term human placenta. J Physiol. 1993, 463: 141-55. 10.1113/jphysiol.1993.sp019588.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cardoso JC, Pinto VC, Vieira FA, Clark MS, Power DM: Evolution of secretin family GPCR members in the metazoa. BMC Evol Biol. 2006, 6: 108-10.1186/1471-2148-6-108.
Article
PubMed
PubMed Central
Google Scholar
Holst JJ: The physiology of glucagon-like peptide 1. Physiol Rev. 2007, 87: 1409-39. 10.1152/physrev.00034.2006.
Article
CAS
PubMed
Google Scholar
Gupta NA, Mells J, Dunham RM, Grakoui A, Handy J, Saxena NK, et al: Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signal-ing pathway. Hepatology. 2010, 51: 1584-92. 10.1002/hep.23569.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doyle ME, Egan JM: Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther. 2007, 113: 546-93. 10.1016/j.pharmthera.2006.11.007.
Article
CAS
PubMed
Google Scholar
Drucker DJ: The biology of incretin hormones. Cell Metab. 2006, 3: 153-65. 10.1016/j.cmet.2006.01.004.
Article
CAS
PubMed
Google Scholar
Baumann MU, Deborde S, Illsley NP: Placental glucose transfer and fetal growth. Endocrine. 2002, 19: 13-22. 10.1385/ENDO:19:1:13.
Article
CAS
PubMed
Google Scholar
Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, HAPO Study Cooperative Research Group, et al: Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008, 358 (19): 1991-2002. 10.1056/NEJMoa0707943.
Article
PubMed
Google Scholar
Illsley NP, Sellers MC, Wright RL: Glycaemic regulation of glucose transporter expression and activity in the human placenta. Placenta. 1998, 19: 517-24. 10.1016/S0143-4004(98)91045-1.
Article
CAS
PubMed
Google Scholar
Jarmuzek P, Wielgos M, Bomba-Opon D: Placental pathologic changes in gestational diabetes mellitus. Neuro Endocrinol Lett. 2015, 36 (2): 101-5.
CAS
PubMed
Google Scholar
Ouhilal S, Vuguin P, Cui L, Du XQ, Gelling RW, Reznik SE, et al: Hypoglycemia, hyperglucagonemia, and fetoplacental defects in glucagon receptor knockout mice: a role for glucagon action in pregnancy maintenance. Am J Physiol Endocrinol Metab. 2012, 302 (5): E522-31. 10.1152/ajpendo.00420.2011.
Article
CAS
PubMed
Google Scholar
Kc K, Shakya S, Zhang H: Gestational diabetes mellitus and macrosomia: a literature review. Ann Nutr Metab. 2015, 66 (Suppl 2): 14-20. 10.1159/000371628.
Article
CAS
PubMed
Google Scholar
Ericsson A, Säljö K, Sjöstrand E, Jansson N, Prasad PD, Powell TL, et al: Brief hyperglycaemia in the early pregnant rat increases fetal weight at term by stimulating placental growth and affecting placental nutrient transport. J Physiol. 2007, 581 (Pt 3): 1323-32. 10.1113/jphysiol.2007.131185.
Article
CAS
PubMed
PubMed Central
Google Scholar
Polin RA, Fox WW, Abman SH: Fetal and Neonatal Physiology. 1998, 2
Google Scholar
Yamasaki M, Hasegawa S, Suzuki H, Hidai K, Saitoh Y, Fukui T: Acetoacetyl-CoA synthetase gene is abundant in rat adipose, and related with fatty acid synthesis in mature adipocytes. Biochem Biophys Res Commun. 2005, 335 (1): 215-9. 10.1016/j.bbrc.2005.07.053.
Article
CAS
PubMed
Google Scholar
Hasegawa S, Noda K, Maeda A, Matsuoka M, Yamasaki M, Fukui T: Acetoacetyl-CoA synthetase, a ketone body-utilizing enzyme, is controlled by SREBP-2 and affects serum cholesterol levels. Mol Genet Metab. 2012, 107 (3): 553-60. 10.1016/j.ymgme.2012.08.017.
Article
CAS
PubMed
Google Scholar
Baardman ME, Kerstjens-Frederikse WS, Berger RM, Bakker MK, Hofstra RM, Plösch T: The role of maternal-fetal cholesterol transport in early fetal life: current insights. Biol Reprod. 2013, 88 (1): 24-10.1095/biolreprod.112.102442.
Article
PubMed
Google Scholar
Christenson LK, Devoto L: Cholesterol transport and steroidogenesis by the corpus luteum. Reprod Biol Endocrinol. 2003, 1: 90-10.1186/1477-7827-1-90.
Article
PubMed
PubMed Central
Google Scholar
Woollett LA: Review: transport of maternal cholesterol to the fetal circulation. Placenta. 2011, 32 (Suppl 2): S218-21. 10.1016/j.placenta.2011.01.011.
Article
PubMed
PubMed Central
Google Scholar
Fujimoto VY, Kane JP, Ishida BY, Bloom MS, Browne RW: High-density lipoprotein metabolism and the human embryo. Hum Reprod Update. 2010, 16 (1): 20-38. 10.1093/humupd/dmp029.
Article
CAS
PubMed
Google Scholar
Roy R, Bélanger A: Elevated levels of endogenous pregnenolone fatty acid esters in follicular fluid high density lipoproteins support progesterone synthesis in porcine granulosa cells. Endocrinology. 1992, 131 (3): 1390-6.
CAS
PubMed
Google Scholar
Herrera E, Amusquivar E: Lipid metabolism in the fetus and the newborn. Diabetes Metab Res Rev. 2000, 16 (3): 202-10. 10.1002/1520-7560(200005/06)16:3<202::AID-DMRR116>3.0.CO;2-#.
Article
CAS
PubMed
Google Scholar
Chen C, Yang B, Zeng Z, Yang H, Liu C, Ren J, et al: Genetic dissection of blood lipid traits by integrating genome-wide association study and gene expression profiling in a porcine model. BMC Genomics. 2013, 14: 848-10.1186/1471-2164-14-848.
Article
PubMed
PubMed Central
Google Scholar
Yang H, Huang X, Zeng Z, Zhang W, Liu C, Fang S, et al: Genome-wide association analysis for blood lipid traits measured in three pig populations reveals a substantial level of genetic heterogeneity. PLoS One. 2015, 10 (6): e0131667-10.1371/journal.pone.0131667.
Article
PubMed
PubMed Central
Google Scholar
Pena RN, Cánovas A, Varona L, Díaz I, Gallardo D, Ramírez O, et al: Nucleotide sequence and association analysis of pig apolipoprotein-B and LDL-receptor genes. Anim Biotechnol. 2009, 20 (3): 110-23. 10.1080/10495390902892518.
Article
CAS
PubMed
Google Scholar
Kamper M, Manns CC, Plieschnig JA, Schneider WJ, Ivessa NE, Hermann M: Estrogen enhances secretion of apolipoprotein B-100 containing lipoproteins by BeWo cells. Biochimie. 2015, 112: 121-8. 10.1016/j.biochi.2015.03.002.
Article
CAS
PubMed
Google Scholar
Oikawa S, Katohm N: Reduced concentrations of apolipoproteins B-100 and A-I in serum from cows with retained placenta. Can J Vet Res. 1997, 61 (4): 312-4.
CAS
PubMed
PubMed Central
Google Scholar
Madsen EM, Lindegaard ML, Andersen CB, Damm P, Nielsen LB: Human placenta secretes apolipoprotein B-100-containing lipoproteins. J Biol Chem. 2004, 279 (53): 55271-6. 10.1074/jbc.M411404200.
Article
CAS
PubMed
Google Scholar
Farese RV, Cases S, Ruland SL, Kayden HJ, Wong JS, Young SG, et al: A novel function for apolipoprotein B: lipoprotein synthesis in the yolk sac is critical for maternal-fetal lipid transport in mice. J Lipid Res. 1996, 37 (2): 347-60.
CAS
PubMed
Google Scholar
Terasawa Y, Cases SJ, Wong JS, Jamil H, Jothi S, Traber MG, et al: Apolipoprotein B-related gene expression and ultrastructural characteristics of lipoprotein secretion in mouse yolk sac during embryonic development. J Lipid Res. 1999, 40 (11): 1967-77.
CAS
PubMed
Google Scholar
Demmer LA, Levin MS, Elovson J, Reuben MA, Lusis AJ, Gordon JI: Tissue-specific expression and developmental regulation of the rat apolipoprotein B gene. Proc Natl Acad Sci U S A. 1986, 83 (21): 8102-6. 10.1073/pnas.83.21.8102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raabe M, Flynn LM, Zlot CH, Wong JS, Véniant MM, Hamilton RL, et al: Knockout of the abetalipoproteinemia gene in mice: reduced lipoprotein secretion in heterozygotes and embryonic lethality in homozygotes. Proc Natl Acad Sci U S A. 1998, 95 (15): 8686-91. 10.1073/pnas.95.15.8686.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farese RV, Ruland SL, Flynn LM, Stokowski RP, Young SG: Knockout of the mouse apolipoprotein B gene results in embryonic lethality in homozygotes and protection against diet-induced hypercholesterolemia in heterozygotes. Proc Natl Acad Sci U S A. 1995, 92 (5): 1774-8. 10.1073/pnas.92.5.1774.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nissilä E, Ohsaki Y, Weber-Boyvat M, Perttilä J, Ikonen E, Olkkonen VM: ORP10, a cholesterol binding protein associated with microtubules, regulates apolipoprotein B-100 secretion. Biochim Biophys Acta. 2012, 1821 (12): 1472-84. 10.1016/j.bbalip.2012.08.004.
Article
PubMed
Google Scholar
Perttilä J, Merikanto K, Naukkarinen J, Surakka I, Martin NW, Tanhuanpää K, et al: OSBPL10, a novel candidate gene for high triglyceride trait in dyslipidemic Finnish subjects, regulates cellular lipid metabolism. J Mol Med (Berl). 2009, 87 (8): 825-35. 10.1007/s00109-009-0490-z.
Article
Google Scholar
Koriyama H, Nakagami H, Katsuya T, Akasaka H, Saitoh S, Shimamoto K, et al: Variation in OSBPL10 is associated with dyslipidemia. Hypertens Res. 2010, 33 (5): 511-4. 10.1038/hr.2010.28.
Article
CAS
PubMed
Google Scholar
Haas J, Beer AG, Widschwendter P, Oberdanner J, Salzmann K, Sarg B, et al: LRP1b shows restricted expression in human tissues and binds to several extracellular ligands, including fibrinogen and apoE-carrying lipoproteins. Atherosclerosis. 2011, 216 (2): 342-7. 10.1016/j.atherosclerosis.2011.02.030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dietrich MF, van der Weyden L, Prosser HM, Bradley A, Herz J, Adams DJ: Ectodomains of the LDL receptor-related proteins LRP1b and LRP4 have anchorage independent functions in vivo. PLoS One. 2010, 5 (4): e9960-10.1371/journal.pone.0009960.
Article
PubMed
PubMed Central
Google Scholar
Hodúlová M, Šedová L, Křenová D, Liška F, Krupková M, Kazdová L, et al: Genomic determinants of triglyceride and cholesterol distribution into lipoprotein fractions in the rat. PLoS One. 2014, 9 (10): e109983-10.1371/journal.pone.0109983.
Article
PubMed
PubMed Central
Google Scholar
Burgdorf KS, Gjesing AP, Grarup N, Justesen JM, Sandholt CH, Witte DR, et al: Association studies of novel obesity-related gene variants with quantitative metabolic phenotypes in a population-based sample of 6,039 Danish individuals. Diabetologia. 2012, 55 (1): 105-13. 10.1007/s00125-011-2320-4.
Article
CAS
PubMed
Google Scholar
Houde AA, Ruchat SM, Allard C, Baillargeon JP, St-Pierre J, Perron P, et al: LRP1B, BRD2 and CACNA1D: new candidate genes in fetal metabolic programming of newborns exposed to maternal hyperglycemia. Epigenomics. 2015, 7 (7): 1111-22. 10.2217/epi.15.72.
Article
CAS
PubMed
Google Scholar
Bischoff SR, Tsai SQ, Hardison NE, Motsinger-Reif AA, Freking BA, Nonneman DJ, et al: Differences in X-chromosome transcriptional activity and cholesterol metabolism between placentae from swine breeds from Asian and Western origins. PLoS One. 2013, 8 (1): e55345-10.1371/journal.pone.0055345.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang J, Liu R, Su L, Xiao Q, Yu M: Transcriptome analysis revealed the embryo-induced gene expression patterns in the endometrium from Meishan and Yorkshire pigs. Int J Mol Sci. 2015, 16 (9): 22692-710. 10.3390/ijms160922692.
Article
CAS
PubMed
PubMed Central
Google Scholar
SRX178700: Pig placenta day 113 of pregnancy RNA-seq. 2015. http://www.ncbi.nlm.nih.gov/sra/?term=SRR543893. Accessed October 9, 2015.
SRX1301560: Next Generation Sequencing Facilitates Quantitative Analysis of Endometrium Transcriptomes During Porcine Embryo Implantation. 2015. http://www.ncbi.nlm.nih.gov/sra/SRX1301560. Accessed October 9, 2015.
López-Fernández LA, del Mazo J: Characterization of genes expressed early in mouse spermatogenesis, isolated from a subtractive cDNA library. Mamm Genome. 1996, 7 (9): 698-700. 10.1007/s003359900210.
Article
PubMed
Google Scholar
de Luis O, López-Fernández LA, del Mazo J: Tex27, a gene containing a zinc-finger domain, is up-regulated during the haploid stages of spermatogenesis. Exp Cell Res. 1999, 249 (2): 320-6. 10.1006/excr.1999.4482.
Article
CAS
PubMed
Google Scholar
Keaton JM, Cooke Bailey JN, Palmer ND, Freedman BI, Langefeld CD, Ng MC, et al: A comparison of type 2 diabetes risk allele load between African Americans and European Americans. Hum Genet. 2014, 133 (12): 1487-95. 10.1007/s00439-014-1486-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakai K, Imamura M, Tanaka Y, Iwata M, Hirose H, Kaku K, et al: Replication study for the association of 9 East Asian GWAS-derived loci with susceptibility to type 2 diabetes in a Japanese population. PLoS One. 2013, 8 (9): e76317-10.1371/journal.pone.0076317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007, 81 (3): 559-75. 10.1086/519795.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al: GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012, 28 (18): 2397-9. 10.1093/bioinformatics/bts444.
Article
CAS
PubMed
Google Scholar