Schmidt JV, Matteson PG, Jones BK, Guan XJ, Tilghman SM: The Dlk1 and Gtl2 genes are linked and reciprocally imprinted. Genes Dev. 2000, 14 (16): 1997-2002.
PubMed
CAS
PubMed Central
Google Scholar
Wylie AA, Murphy SK, Orton TC, Jirtle RL: Novel imprinted DLK1/GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation. Genome Res. 2000, 10 (11): 1711-1718. 10.1101/gr.161600.
Article
PubMed
CAS
PubMed Central
Google Scholar
Takada S, Tevendale M, Baker J, Georgiades P, Campbell E, Freeman T, Johnson MH, Paulsen M, Ferguson-Smith AC: Delta-like and Gtl2 are reciprocally expressed, differentially methylated linked imprinted genes on mouse chromosome 12. Curr Biol. 2000, 10 (18): 1135-1138. 10.1016/S0960-9822(00)00704-1.
Article
PubMed
CAS
Google Scholar
Kobayashi S, Wagatsuma H, Ono R, Ichikawa H, Yamazaki M, Tashiro H, Aisaka K, Miyoshi N, Kohda T, Ogura A, Ohki M, Kaneko-Ishino T, Ishino F: Mouse Peg9/Dlk1 and human PEG9/DLK1 are paternally expressed imprinted genes closely located to the maternally expressed imprinted genes: mouse Meg3/Gtl2 and human MEG3. Genes Cells. 2000, 5 (12): 1029-1037. 10.1046/j.1365-2443.2000.00390.x.
Article
PubMed
CAS
Google Scholar
Miyoshi N, Wagatsuma H, Wakana S, Shiroishi T, Nomura M, Aisaka K, Kohda T, Surani MA, Kaneko-Ishino T, Ishino F: Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells. 2000, 5 (3): 211-220. 10.1046/j.1365-2443.2000.00320.x.
Article
PubMed
CAS
Google Scholar
Yevtodiyenko A, Carr MS, Patel N, Schmidt JV: Analysis of candidate imprinted genes linked to Dlk1-Gtl2 using a congenic mouse line. Mamm Genome. 2002, 13 (11): 633-638. 10.1007/s00335-002-2208-1.
Article
PubMed
CAS
Google Scholar
Hernandez A, Fiering S, Martinez E, Galton VA, St Germain D: The gene locus encoding iodothyronine deiodinase type 3 (Dio3) is imprinted in the fetus and expresses antisense transcripts. Endocrinology. 2002, 143 (11): 4483-4486. 10.1210/en.2002-220800.
Article
PubMed
CAS
Google Scholar
Tsai CE, Lin SP, Ito M, Takagi N, Takada S, Ferguson-Smith AC: Genomic imprinting contributes to thyroid hormone metabolism in the mouse embryo. Curr Biol. 2002, 12 (14): 1221-1226. 10.1016/S0960-9822(02)00951-X.
Article
PubMed
CAS
Google Scholar
Charlier C, Segers K, Wagenaar D, Karim L, Berghmans S, Jaillon O, Shay T, Weissenbach J, Cockett N, Gyapay G, Georges M: Human-ovine comparative sequencing of a 250-kb imprinted domain encompassing the Callipyge (clpg) locus and identification of six imprinted transcripts: DLK1, DAT, GTL2, PEG11, antiPEG11, and MEG8. Genome Res. 2001, 11 (5): 850-862. 10.1101/gr.172701.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hatada I, Morita S, Obata Y, Sotomaru Y, Shimoda M, Kono T: Identification of a new imprinted gene, Rian, on mouse chromosome 12 by fluorescent differential display screening. J Biochem (Tokyo). 2001, 130 (2): 187-190.
Article
CAS
Google Scholar
Cavaille J, Seitz H, Paulsen M, Ferguson-Smith AC, Bachellerie JP: Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region. Hum Mol Genet. 2002, 11 (13): 1527-1538. 10.1093/hmg/11.13.1527.
Article
PubMed
CAS
Google Scholar
Seitz H, Youngson N, Lin SP, Dalbert S, Paulsen M, Bachellerie JP, Ferguson-Smith AC, Cavaille J: Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat Genet. 2003, 34 (3): 261-262. 10.1038/ng1171.
Article
PubMed
CAS
Google Scholar
Tierling S, Dalbert S, Schoppenhorst S, Tsai CE, Oliger S, Ferguson-Smith AC, Paulsen M, Walter J: High-resolution map and imprinting analysis of the Gtl2-Dnchc1 domain on mouse chromosome 12. Genomics. 2006, 87 (2): 225-235. 10.1016/j.ygeno.2005.09.018.
Article
PubMed
CAS
Google Scholar
Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaille J: A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res. 2004, 14 (9): 1741-1748. 10.1101/gr.2743304.
Article
PubMed
CAS
PubMed Central
Google Scholar
Davis E, Caiment F, Tordoir X, Cavaille J, Ferguson-Smith A, Cockett N, Georges M, Charlier C: RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr Biol. 2005, 15 (8): 743-749. 10.1016/j.cub.2005.02.060.
Article
PubMed
CAS
Google Scholar
Feinberg AP, Tycko B: The history of cancer epigenetics. Nat Rev Cancer. 2004, 4 (2): 143-153. 10.1038/nrc1279.
Article
PubMed
CAS
Google Scholar
Laborda J, Sausville EA, Hoffman T, Notario V: dlk, a putative mammalian homeotic gene differentially expressed in small cell lung carcinoma and neuroendocrine tumor cell line. J Biol Chem. 1993, 268 (6): 3817-3820.
PubMed
CAS
Google Scholar
Van Limpt VA, Chan AJ, Van Sluis PG, Caron HN, Van Noesel CJ, Versteeg R: High delta-like 1 expression in a subset of neuroblastoma cell lines corresponds to a differentiated chromaffin cell type. Int J Cancer. 2003, 105 (1): 61-69. 10.1002/ijc.11047.
Article
PubMed
CAS
Google Scholar
Astuti D, Latif F, Wagner K, Gentle D, Cooper WN, Catchpoole D, Grundy R, Ferguson-Smith AC, Maher ER: Epigenetic alteration at the DLK1-GTL2 imprinted domain in human neoplasia: analysis of neuroblastoma, phaeochromocytoma and Wilms' tumour. Br J Cancer. 2005, 92 (8): 1574-1580. 10.1038/sj.bjc.6602478.
Article
PubMed
CAS
PubMed Central
Google Scholar
Smas CM, Sul HS: Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation. Cell. 1993, 73 (4): 725-734. 10.1016/0092-8674(93)90252-L.
Article
PubMed
CAS
Google Scholar
Moore KA, Pytowski B, Witte L, Hicklin D, Lemischka IR: Hematopoietic activity of a stromal cell transmembrane protein containing epidermal growth factor-like repeat motifs. Proc Natl Acad Sci U S A. 1997, 94 (8): 4011-4016. 10.1073/pnas.94.8.4011.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bauer SR, Ruiz-Hidalgo MJ, Rudikoff EK, Goldstein J, Laborda J: Modulated expression of the epidermal growth factor-like homeotic protein dlk influences stromal-cell-pre-B-cell interactions, stromal cell adipogenesis, and pre-B-cell interleukin-7 requirements. Mol Cell Biol. 1998, 18 (9): 5247-5255.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ohno N, Izawa A, Hattori M, Kageyama R, Sudo T: dlk inhibits stem cell factor-induced colony formation of murine hematopoietic progenitors: Hes-1-independent effect. Stem Cells. 2001, 19 (1): 71-79. 10.1634/stemcells.19-1-71.
Article
PubMed
CAS
Google Scholar
Kaneta M, Osawa M, Sudo K, Nakauchi H, Farr AG, Takahama Y: A role for pref-1 and HES-1 in thymocyte development. J Immunol. 2000, 164 (1): 256-264.
Article
PubMed
CAS
Google Scholar
Moon YS, Smas CM, Lee K, Villena JA, Kim KH, Yun EJ, Sul HS: Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol Cell Biol. 2002, 22 (15): 5585-5592. 10.1128/MCB.22.15.5585-5592.2002.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schuster-Gossler K, Simon-Chazottes D, Guenet JL, Zachgo J, Gossler A: Gtl2lacZ, an insertional mutation on mouse chromosome 12 with parental origin-dependent phenotype. Mamm Genome. 1996, 7 (1): 20-24. 10.1007/s003359900006.
Article
PubMed
CAS
Google Scholar
Schuster-Gossler K, Bilinski P, Sado T, Ferguson-Smith A, Gossler A: The mouse Gtl2 gene is differentially expressed during embryonic development, encodes multiple alternatively spliced transcripts, and may act as an RNA. Dev Dyn. 1998, 212 (2): 214-228. 10.1002/(SICI)1097-0177(199806)212:2<214::AID-AJA6>3.0.CO;2-K.
Article
PubMed
CAS
Google Scholar
Takada S, Paulsen M, Tevendale M, Tsai CE, Kelsey G, Cattanach BM, Ferguson-Smith AC: Epigenetic analysis of the Dlk1-Gtl2 imprinted domain on mouse chromosome 12: implications for imprinting control from comparison with Igf2-H19. Hum Mol Genet. 2002, 11 (1): 77-86. 10.1093/hmg/11.1.77.
Article
PubMed
CAS
Google Scholar
Lin SP, Youngson N, Takada S, Seitz H, Reik W, Paulsen M, Cavaille J, Ferguson-Smith AC: Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat Genet. 2003, 35 (1): 97-102. 10.1038/ng1233.
Article
PubMed
CAS
Google Scholar
Schuster-Gossler KA, Zachgo J, Soininen R, Schoor M, Korn R, Gossler A: Gene trap integrations in genes active in mouse embryonic stem cells efficiently detect developmentally regulated gene expression. Transgenics. 1994, 1: 281-291.
CAS
Google Scholar
Paulsen M, Takada S, Youngson NA, Benchaib M, Charlier C, Segers K, Georges M, Ferguson-Smith AC: Comparative sequence analysis of the imprinted Dlk1-Gtl2 locus in three mammalian species reveals highly conserved genomic elements and refines comparison with the Igf2-H19 region. Genome Res. 2001, 11 (12): 2085-2094. 10.1101/gr.206901.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yevtodiyenko A, Steshina EY, Farner SC, Levorse JM, Schmidt JV: A 178-kb BAC transgene imprints the mouse Gtl2 gene and localizes tissue-specific regulatory elements. Genomics. 2004, 84 (2): 277-287. 10.1016/j.ygeno.2004.04.005.
Article
PubMed
CAS
Google Scholar
Croteau S, Charron MC, Latham KE, Naumova AK: Alternative splicing and imprinting control of the Meg3/Gtl2-Dlk1 locus in mouse embryos. Mamm Genome. 2003, 14 (4): 231-241. 10.1007/s00335-002-2244-x.
Article
PubMed
CAS
Google Scholar
Shi W, Krella A, Orth A, Yu Y, Fundele R: Widespread disruption of genomic imprinting in adult interspecies mouse (Mus) hybrids. Genesis. 2005, 43 (3): 100-108. 10.1002/gene.20161.
Article
PubMed
CAS
Google Scholar
Shi W, Lefebvre L, Yu Y, Otto S, Krella A, Orth A, Fundele R: Loss-of-imprinting of Peg1 in mouse interspecies hybrids is correlated with altered growth. Genesis. 2004, 39 (1): 65-72. 10.1002/gene.20027.
Article
PubMed
CAS
Google Scholar
Lakso M, Pichel JG, Gorman JR, Sauer B, Okamoto Y, Lee E, Alt FW, Westphal H: Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc Natl Acad Sci U S A. 1996, 93 (12): 5860-5865. 10.1073/pnas.93.12.5860.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM: CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature. 2000, 405 (6785): 486-489. 10.1038/35013106.
Article
PubMed
CAS
Google Scholar
Bell AC, Felsenfeld G: Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature. 2000, 405 (6785): 482-485. 10.1038/35013100.
Article
PubMed
CAS
Google Scholar
Chao W, Huynh KD, Spencer RJ, Davidow LS, Lee JT: CTCF, a candidate trans-acting factor for X-inactivation choice. Science. 2002, 295 (5553): 345-347. 10.1126/science.1065982.
Article
PubMed
CAS
Google Scholar
Yoon B, Herman H, Hu B, Park YJ, Lindroth A, Bell A, West AG, Chang Y, Stablewski A, Piel JC, Loukinov DI, Lobanenkov VV, Soloway PD: Rasgrf1 imprinting is regulated by a CTCF-dependent methylation-sensitive enhancer blocker. Mol Cell Biol. 2005, 25 (24): 11184-11190. 10.1128/MCB.25.24.11184-11190.2005.
Article
PubMed
CAS
PubMed Central
Google Scholar
Leighton PA, Saam JR, Ingram RS, Stewart CL, Tilghman SM: An enhancer deletion affects both H19 and Igf2 expression. Genes Dev. 1995, 9 (17): 2079-2089.
Article
PubMed
CAS
Google Scholar
Thorvaldsen JL, Duran KL, Bartolomei MS: Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 1998, 12 (23): 3693-3702.
Article
PubMed
CAS
PubMed Central
Google Scholar
Charlier C, Segers K, Karim L, Shay T, Gyapay G, Cockett N, Georges M: The callipyge mutation enhances the expression of coregulated imprinted genes in cis without affecting their imprinting status. Nat Genet. 2001, 27 (4): 367-369. 10.1038/86856.
Article
PubMed
CAS
Google Scholar
Freking BA, Murphy SK, Wylie AA, Rhodes SJ, Keele JW, Leymaster KA, Jirtle RL, Smith TP: Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Res. 2002, 12 (10): 1496-1506. 10.1101/gr.571002.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sekita Y, Wagatsuma H, Irie M, Kobayashi S, Kohda T, Matsuda J, Yokoyama M, Ogura A, Schuster-Gossler K, Gossler A, Ishino F, Kaneko-Ishino T: Aberrant regulation of imprinted gene expression in Gtl2lacZ mice. Cytogenet Genome Res. 2006, 113 (1-4): 223-229. 10.1159/000090836.
Article
PubMed
CAS
Google Scholar
Turker MS: Gene silencing in mammalian cells and the spread of DNA methylation. Oncogene. 2002, 21 (35): 5388-5393. 10.1038/sj.onc.1205599.
Article
PubMed
CAS
Google Scholar
Koetsier PA, Mangel L, Schmitz B, Doerfler W: Stability of transgene methylation patterns in mice: position effects, strain specificity and cellular mosaicism. Transgenic Res. 1996, 5 (4): 235-244. 10.1007/BF01972877.
Article
PubMed
CAS
Google Scholar
Engler P, Doglio LT, Bozek G, Storb U: A cis-acting element that directs the activity of the murine methylation modifier locus Ssm1. Proc Natl Acad Sci U S A. 1998, 95 (18): 10763-10768. 10.1073/pnas.95.18.10763.
Article
PubMed
CAS
PubMed Central
Google Scholar
Padjen K, Ratnam S, Storb U: DNA methylation precedes chromatin modifications under the influence of the strain-specific modifier Ssm1. Mol Cell Biol. 2005, 25 (11): 4782-4791. 10.1128/MCB.25.11.4782-4791.2005.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schumacher A, Koetsier PA, Hertz J, Doerfler W: Epigenetic and genotype-specific effects on the stability of de novo imposed methylation patterns in transgenic mice. J Biol Chem. 2000, 275 (48): 37915-37921. 10.1074/jbc.M004839200.
Article
PubMed
CAS
Google Scholar
Sapienza C, Peterson AC, Rossant J, Balling R: Degree of methylation of transgenes is dependent on gamete of origin. Nature. 1987, 328: 251-254. 10.1038/328251a0.
Article
PubMed
CAS
Google Scholar
Eszterhas SK, Bouhassira EE, Martin DI, Fiering S: Transcriptional interference by independently regulated genes occurs in any relative arrangement of the genes and is influenced by chromosomal integration position. Mol Cell Biol. 2002, 22 (2): 469-479. 10.1128/MCB.22.2.469-479.2002.
Article
PubMed
CAS
PubMed Central
Google Scholar
Siegfried Z, Eden S, Mendelsohn M, Feng X, Tsuberi BZ, Cedar H: DNA methylation represses transcription in vivo. Nat Genet. 1999, 22 (2): 203-206. 10.1038/9727.
Article
PubMed
CAS
Google Scholar
Georges M, Charlier C, Cockett N: The callipyge locus: evidence for the trans interaction of reciprocally imprinted genes. Trends Genet. 2003, 19 (5): 248-252. 10.1016/S0168-9525(03)00082-9.
Article
PubMed
CAS
Google Scholar
Murphy SK, Nolan CM, Huang Z, Kucera KS, Freking BA, Smith TP, Leymaster KA, Weidman JR, Jirtle RL: Callipyge mutation affects gene expression in cis: a potential role for chromatin structure. Genome Res. 2006, 16 (3): 340-346. 10.1101/gr.4389306.
Article
PubMed
CAS
PubMed Central
Google Scholar
Behringer RR, Mathews LS, Palmiter RD, Brinster RL: Dwarf mice produced by genetic ablation of growth hormone expressing cells. Genes Dev. 1988, 2: 453-461.
Article
PubMed
CAS
Google Scholar
Zhou Y, Xu BC, Maheshwari HG, He L, Reed M, Lozykowski M, Okada S, Cataldo L, Coschigamo K, Wagner TE, Baumann G, Kopchick JJ: A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci U S A. 1997, 94 (24): 13215-13220. 10.1073/pnas.94.24.13215.
Article
PubMed
CAS
PubMed Central
Google Scholar
Carlsson C, Tornehave D, Lindberg K, Galante P, Billestrup N, Michelsen B, Larsson LI, Nielsen JH: Growth hormone and prolactin stimulate the expression of rat preadipocyte factor-1/delta-like protein in pancreatic islets: molecular cloning and expression pattern during development and growth of the endocrine pancreas. Endocrinology. 1997, 138 (9): 3940-3948. 10.1210/en.138.9.3940.
PubMed
CAS
Google Scholar
Friedrichsen BN, Carlsson C, Moldrup A, Michelsen B, Jensen CH, Teisner B, Nielsen JH: Expression, biosynthesis and release of preadipocyte factor-1/ delta-like protein/fetal antigen-1 in pancreatic beta-cells: possible physiological implications. J Endocrinol. 2003, 176 (2): 257-266. 10.1677/joe.0.1760257.
Article
PubMed
CAS
Google Scholar
Schmidt JV: Gene Targeting. Current Protocols in Toxicology. 2001, New York , John Wiley & Sons, 15.1-15.2:
Google Scholar