Peter JB, Barnard RJ, Edgerton VR, Gillespie CA, Stempel KE: Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry. 1972, 11: 2627-2633. 10.1021/bi00764a013.
Article
PubMed
CAS
Google Scholar
Simoneau JA, Bouchard C: Genetic determinism of fiber type proportion in human skeletal muscle. FASEB J. 1995, 9: 1091-1095.
PubMed
CAS
Google Scholar
Simoneau JA, Bouchard C: Skeletal muscle metabolism and body fat content in men and women. Obes Res. 1995, 3: 23-29.
Article
PubMed
CAS
Google Scholar
Simoneau JA, Kelley DE: Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM. J Appl Physiol. 1997, 83: 166-171.
PubMed
CAS
Google Scholar
Simoneau JA, Veerkamp JH, Turcotte LP, Kelley DE: Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J. 1999, 13: 2051-2060.
PubMed
CAS
Google Scholar
Tanner CJ, Barakat HA, Dohm GL, Pories WJ, MacDonald KG, Cunningham PR, Swanson MS, Houmard JA: Muscle fiber type is associated with obesity and weight loss. Am J Physiol Endocrinol Metab. 2002, 282: 1191-1196.
Article
Google Scholar
Lengerken vG, Maak S, Wicke M, Fiedler I, Ender K: Suitability of structural and functional traits of skeletal muscle for the genetic improvement of meat quality in pigs. Arch Tierz. 1994, 37: 133-143.
Google Scholar
Fiedler I, Ender K, Wicke M, Maak S, Lengerken vG, Meyer W: Structural and functional characteristics of muscle fibres in pigs with different malignant hyperthermia susceptibility (MHS) and different meat quality. Meat Sci. 1999, 53: 9-15. 10.1016/S0309-1740(99)00030-3.
Article
PubMed
CAS
Google Scholar
Rehfeldt C, Stickland N, Fiedler I, Wegner J: Environment and genetic factors as sources of variation in skeletal muscle fibre number. Basic Appl Myol. 1999, 9: 235-253.
Google Scholar
Larzul C, Lefaucheur L, Ecolan P, Gogue J, Talmant A, Sellier P, Le Roy P, Monin G: Phenotypic and genetic parameters for longissimus muscle fibre characteristics in relation to growth, carcass, and meat quality traits in large white pigs. J Anim Sci. 1997, 75: 3126-3137.
PubMed
CAS
Google Scholar
Rehfeldt C, Bünger L, Dietl G, Fiedler I, Wegner J: Zur Erblichkeit von Muskelstrukturmerkmalen und ihren genetisch begründeten Beziehungen zu Wachstum und Belastbarkeit bei Labormäusen. Arch Tierz. 1988, 31: 185-195.
Google Scholar
Snyman MA, Cloete SW, Olivier JJ: Genetic and phenotypic correlations of total weight of lamb weaned with body weight, clean fleece weight and mean fibre diameter in three South African Merino flocks. Livest Prod Sci. 1998, 55: 157-162. 10.1016/S0301-6226(98)00119-5.
Article
Google Scholar
Rivero JL, Barrey E: Heritabilities and genetic and phenotypic parameters for gluteus medius muscle fibre type composition, fibre size and capillaries in purebred Spanish horses. Livest Prod Sci. 2001, 72: 233-241. 10.1016/S0301-6226(01)00221-4.
Article
Google Scholar
Fiedler I, Dietl G, Rehfeldt C, Wegner J, Ender K: Muscle fibre traits as additional selection criteria for muscle growth and meat quality in pigs – results of a simulated selection. J Anim Breed Genet. 2004, 121: 331-344. 10.1111/j.1439-0388.2004.00466.x.
Article
Google Scholar
Malek M, Dekkers JC, Lee HK, Baas TJ, Prusa K, Huff-Lonergan E, Rothschild MF: A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mamm Genome. 2001, 12: 637-645. 10.1007/s003350020019.
Article
PubMed
CAS
Google Scholar
Nii M, Hayashi T, Mikawa S, Tani F, Niki A, Mori N, Uchida Y, Fujishima-Kanaya N, Komatsu M, Awata T: Quantitative trait loci mapping for meat quality and muscle fiber traits in a Japanese wild boar × Large White intercross. J Anim Sci. 2005, 83: 308-315.
PubMed
CAS
Google Scholar
ArkDB. [http://www.thearkdb.org/]
de Koning DJ, Harlizius B, Rattink AP, Groenen MA, Brascamp EW, van Arendonk JA: Detection and characterization of quantitative trait loci for meat quality traits in pigs. J Anim Sci. 2001, 79: 2812-2819.
PubMed
CAS
Google Scholar
Bidanel JP, Milan D, Iannuccelli N, Amigues Y, Boscher MY, Bourgeois F, Caritez JC, Gruand J, Le Roy P, Lagant H, Quintanilla R, Renard C, Gellin J, Ollivier L, Chevalet C: Detection of quantitative trait loci for growth and fatness in pigs. Genet Sel Evol. 2001, 33: 289-309. 10.1051/gse:2001120.
Article
PubMed
CAS
PubMed Central
Google Scholar
Alfonso L, Haley CS: Power of different F2 schemes for QTL detection in livestock. Anim Sci. 1998, 66: 1-8.
Article
Google Scholar
Evans GJ, Giuffra E, Sanchez A, Kerje S, Davalos G, Vidal O, Illan S, Noguera JL, Varona L, Velander I, Southwood OI, de Koning DJ, Haley CS, Plastow GS, Andersson L: Identification of quantitative trait loci for production traits in commercial pig populations. Genetics. 2003, 164: 621-627.
PubMed
CAS
PubMed Central
Google Scholar
Vidal O, Noguera JL, Amills M, Varona L, Gil M, Jimenez N, Davalos G, Folch JM, Sanchez A: Identification of carcass and meat quality quantitative trait loci in a Landrace pig population selected for growth and leanness. J Anim Sci. 2005, 83: 293-300.
PubMed
CAS
Google Scholar
Nagamine Y, Haley CS, Sewalem A, Visscher PM: Quantitative trait loci variation for growth and obesity between and within lines of pigs (Sus scrofa). Genetics. 2003, 164: 629-635.
PubMed
PubMed Central
Google Scholar
Brocks L, Klont RE, Buist W, Greef de K, Tieman M, Engel B: The effects of selection of pigs on growth rate vs leanness on histological characteristics of different muscle. J Anim Sci. 2000, 78: 1247-1254.
PubMed
CAS
Google Scholar
Gellerich FN, Trumbeckaite S, Müller T, Deschauer M, Chen Y, Gizatullina Z, Zierz S: Energetic depression caused by mitochondial dysfunction. Mol Cell Biochem. 2004, 256–257: 391-405. 10.1023/B:MCBI.0000009885.34498.e6.
Article
PubMed
Google Scholar
Berchtold MW, Brinkmeier H, Muntener M: Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev. 2000, 80: 1215-1265.
PubMed
CAS
Google Scholar
PigQTLdb. [http://www.animalgenome.org/QTLdb/]
Hu ZL, Dracheva S, Jang W, Maglott D, Bastiaansen J, Rothschild MF, Reecy JM: A QTL resource and comparison tool for pigs: PigQTLDB. Mamm Genome. 2005, 16: 792-800. 10.1007/s00335-005-0060-9.
Article
PubMed
Google Scholar
Paszek AA, Wilkie PJ, Flickinger GH, Miller LM, Louis CF, Rohrer GA, Alexander LJ, Beattie CW, Schook LB: Interval mapping of carcass and meat quality traits in a divergent swine cross. Anim Biotech. 2001, 12: 155-165. 10.1081/ABIO-100108342.
Article
CAS
Google Scholar
Ovilo C, Clop A, Noguera JL, Oliver MA, Barragan C, Rodriguez C, Silio L, Toro MA, Coll A, Folch JM, Sanchez A, Babot D, Varona L, Perez-Enciso M: Quantitative trait locus mapping for meat quality traits in an Iberian × Landrace F2 pig population. J Anim Sci. 2002, 80: 2801-2808.
PubMed
CAS
Google Scholar
Sato S, Oyamada Y, Atsuji K, Nade T, Sato S, Kobayashi E, Mitsuhashi T, Nirasawa K, Komatsuda A, Saito Y, Terai S, Hayashi T, Sugimoto Y: Quantitative trait loci analysis for growth and carcass traits in a Meishan × Duroc F2 resource population. J Anim Sci. 2003, 81: 2938-2949.
PubMed
CAS
Google Scholar
Zuo B, Xiong YZ, Su YH, Deng CY, Zheng R, Jiang S: Mapping quantitative trait loci for meat quality on pig chromosome 3,4 and 7. Asian-Australian J Anim Sci. 2003, 16: 320-324.
Article
CAS
Google Scholar
de Koning DJ, Pong-Wong R, Varona L, Evans GJ, Giuffra E, Sanchez A, Plastow G, Noguera JL, Andersson L, Haley CS: Full pedigree quantitative trait locus analysis in commercial pigs using variance components. J Anim Sci. 2003, 81: 2155-2163.
PubMed
CAS
Google Scholar
Davoli R, Fontanesi L, Cagnazzo M, Scotti E, Buttazzoni L, Yerle M, Russo V: Identification of SNPs, mapping and analysis of allele frequencies in two candidate genes for meat production traits: the porcine myosin heavy chain 2B (MYH4) and the skeletal muscle myosin regulatory light chain 2 (HUMMLC2B). Anim Genet. 2003, 34: 221-225. 10.1046/j.1365-2052.2003.00992.x.
Article
PubMed
CAS
Google Scholar
Milan D, Jeon JT, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard C, Paul S, Iannuccelli N, Rask L, Ronne H, Lundstrom K, Reinsch N, Gellin J, Kalm E, Roy PL, Chardon P, Andersson L: A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science. 2000, 288: 1248-1251. 10.1126/science.288.5469.1248.
Article
PubMed
CAS
Google Scholar
Ciobanu D, Bastiaansen J, Malek M, Helm J, Woollard J, Plastow G, Rothschild M: Evidence for new alleles in the protein kinase adenosine monophosphate-activated gamma(3)-subunit gene associated with low glycogen content in pig skeletal muscle and improved meat quality. Genetics. 2001, 159: 1151-1162.
PubMed
CAS
PubMed Central
Google Scholar
Geldermann H, Müller E, Moser G, Reiner G, Bartenschlager H, Cepica S, Stratil A, Kuryl J, Moran C, Davoli R, Brunsch C: Genome-wide linkage and QTL mapping in porcine F2 families generated from Pietrain, Meishan and Wild Boar crosses. J Anim Breed Genet. 2003, 120: 363-393. 10.1046/j.0931-2668.2003.00408.x.
Article
CAS
Google Scholar
Jeon JT, Carlborg O, Tornsten A, Giuffra E, Amarger V, Chardon P, Andersson-Eklund L, Andersson K, Hansson I, Lundstrom K, Andersson L: A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat Genet. 1999, 21: 157-158. 10.1038/5938.
Article
PubMed
CAS
Google Scholar
Nezer C, Moreau L, Brouwers B, Coppieters W, Detilleux J, Hanset R, Karim L, Kvasz A, Leroy P, Georges M: An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat Genet. 1999, 21: 155-156. 10.1038/5935.
Article
PubMed
CAS
Google Scholar
Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald AL, Haley CS, Buys N, Tally M, Andersson G, Georges M, Andersson L: A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature. 2003, 425: 832-836. 10.1038/nature02064.
Article
PubMed
CAS
Google Scholar
Jungerius BJ, van Laere AS, Te Pas MF, van Oost BA, Andersson L, Groenen MA: The IGF2-intron3-G3072A substitution explains a major imprinted QTL effect on backfat thickness in a Meishan × European white pig intercross. Genet Res. 2004, 84: 95-101. 10.1017/S0016672304007098.
Article
PubMed
CAS
Google Scholar
Estelle J, Mercade A, Noguera JL, Perez-Enciso M, Ovilo C, Sanchez A, Folch JM: Effect of the porcine IGF2-intron3-G3072A substitution in an outbred Large White population and in an Iberian × Landrace cross. J Anim Sci. 2005, 83: 2723-2728.
PubMed
CAS
Google Scholar
Andersson L, Haley CS, Ellegren H, Knott SA, Johansson M, Andersson K, Andersson-Eklund L, Edfors-Lilja I, Fredholm M, Hansson I, Hakansson J, Lundström K: Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science. 1994, 263: 1771-1774.
Article
PubMed
CAS
Google Scholar
Walling GA, Visscher PM, Andersson L, Rothschild MF, Wang L, Moser G, Groenen MA, Bidanel JP, Cepica S, Archibald AL, Geldermann H, de Koning DJ, Milan D, Haley CS: Combined analyses of data from quantitative trait loci mapping studies. Chromosome 4 effects on porcine growth and fatness. Genetics. 2000, 155: 1369-1378.
PubMed
CAS
PubMed Central
Google Scholar
Wimmers K, Murani E, Ponsuksili S, Yerle M, Schellander K: Detection of quantitative trait loci for carcass traits in the pig by using AFLP. Mamm Genome. 2002, 13: 206-210. 10.1007/s00335-001-3052-4.
Article
PubMed
CAS
Google Scholar
Grindflek E, Szyda J, Liu Z, Lien S: Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross. Mamm Genome. 2001, 12: 299-304. 10.1007/s003350010278.
Article
PubMed
CAS
Google Scholar
Lionikas A, Blizard DA, Vandenbergh DJ, Glover MG, Stout JT, Vogler GP, McClearn GE, Larsson L: Genetic architecture of fast- and slow-twitch skeletal muscle weight in 200-day-old mice of the C57BL/6J and DBA/2J lineage. Physiol Genomics. 2003, 16: 141-152. 10.1152/physiolgenomics.00103.2003.
Article
PubMed
CAS
Google Scholar
Huygens W, Thomis MA, Peeters MW, Aerssens J, Janssen R, Vlietinck RF, Beunen G: Linkage of myostatin pathway genes with knee strength in humans. Physiol Genomics. 2004, 17: 264-270. 10.1152/physiolgenomics.00224.2003.
Article
PubMed
CAS
Google Scholar
Huygens W, Thomis MA, Peeters MW, Aerssens J, Vlietinck R, Beunen GP: Quantitative Trait Loci for human muscle strength: linkage analysis of myostatin pathway genes. Physiol Genomics. 2005, May 24,
Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M: A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet. 1997, 17: 71-74. 10.1038/ng0997-71.
Article
PubMed
CAS
Google Scholar
Bunger L, Ott G, Varga L, Schlote W, Rehfeldt C, Renne U, Williams JL, Hill WG: Marker-assisted introgression of the Compact mutant myostatin allele MstnCmpt-dl1Abc into a mouse line with extreme growth effects on body composition and muscularity. Genet Res. 2004, 84: 161-173. 10.1017/S0016672304007165.
Article
PubMed
Google Scholar
Sonstegard TS, Rohrer GA, Smith TP: Myostatin maps to porcine chromosome 15 by linkage and physical analyses. Anim Genet. 1998, 29: 19-22. 10.1046/j.1365-2052.1998.00229.x.
Article
PubMed
CAS
Google Scholar
Cepica S, Yerle M, Stratil A, Schroffel J, Redl B: Regional localization of porcine MYOD1, MYF5, LEP, UCP3 and LCN1 genes. Anim Genet. 1999, 30: 476-478.
PubMed
CAS
Google Scholar
Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, Evans RM: Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol. 2004, 2: e294-10.1371/journal.pbio.0020294.
Article
PubMed
PubMed Central
Google Scholar
Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM: Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002, 418: 797-801. 10.1038/nature00904.
Article
PubMed
CAS
Google Scholar
Wimmers K, Murani E, Schellander K, Ponsuksili S: Combining QTL- and expression-analysis: identification of functional positional candidate genes for meat quality and carcass traits. Arch Tierz. 2005, 48: 23-31.
Google Scholar
Zhao SH, Nettleton D, Liu W, Fitzsimmons C, Ernst CW, Raney NE, Tuggle CK: Complementary DNA macroarray analyses of differential gene expression in porcine fetal and postnatal muscle. J Anim Sci. 2003, 81: 2179-2188.
PubMed
CAS
Google Scholar
Fiedler I, Nürnberg K, Hardge T, Nürnberg G, Ender K: Phenotypic variations of muscle fibre and intramuscular fat traits in Longissimus muscle of F2 population Duroc × Berlin Miniature Pig and relationships to meat quality. Meat Sci. 2003, 63: 131-139. 10.1016/S0309-1740(02)00075-X.
Article
PubMed
Google Scholar
Horak V: A successive histochemical staining for succinate dehydrogenase and „reserved" ATPase in a single section for the skeletal muscle fibre typing. Histochemistry. 1983, 78: 545-553. 10.1007/BF00496207.
Article
PubMed
CAS
Google Scholar
Wegner J, Fiedler I, Klosowska D, Klosowski B, Ziegan B: Veränderungen der Muskelfasertypenverteilung im M. longissimus dorsi von Ebern während des Wachstums, dargestellt mit verschiedenen histochemischen Methoden. Anat Histol Embryol. 1993, 22: 355-359.
Article
PubMed
CAS
Google Scholar
Sosnicki A: Association of micrometric traits on meat quality, fattening and slaughter traits in the pig. J Anim Sci. 1987, 64: 1412-1418.
Google Scholar
Walasik K, Klosowska D, Grzeskowiak G: Occurrence of pathological changed in M. longissimus lumborum of some crosses of pigs with share of Hampshire breed. Rocz Nauk, Zootechn. 2000, 6: 233-237.
Google Scholar
Josza L, Lehto MU, Jarvinen M, Kvist M, Reffy A, Kannus P: A comparative-study of methods for demonstration and quantification of capillaries in skeletal-muscle. Acta Histochem. 1993, 94: 89-96.
Article
PubMed
CAS
Google Scholar
Roth K, Wenzelides K: Das interaktive Bildverarbeitungssystem AMBA/R. Gegenbaurs Morphol Jahrb. 1989, 135: 25-32.
PubMed
CAS
Google Scholar
Beyersdorfer G, Ohlerich M, Wegner J: A semi-automated device for measuring muscle-fibers at the microscopic cross-section slide. Z Mikrosk Anat Forsch. 1985, 99: 671-675.
PubMed
CAS
Google Scholar
Picard B, Lefaucheur L, Berri C, Duclos MJ: Muscle fibre ontogenesis in farm animal species. Reprod Nutr Dev. 2002, 42: 415-431. 10.1051/rnd:2002035.
Article
PubMed
Google Scholar
Green P, Falls K, Crooks S: Documentation for CRI-MAP, Version 2.4. 1990
Google Scholar
QTLexpress. [http://qtl.cap.ed.ac.uk/]
Seaton G, Haley CS, Knott SA, Kearsey M, Visscher PM: QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics. 2002, 18: 339-340. 10.1093/bioinformatics/18.2.339.
Article
PubMed
CAS
Google Scholar
Haley CS, Knott SA, Elsen JM: Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics. 1994, 136: 1195-1207.
PubMed
CAS
PubMed Central
Google Scholar
Knott SA, Elsen JM, Haley CS: Methods for multiple marker mapping of quantitative trait loci in half-sib populations. Theor Appl Genet. 1996, 93: 71-80. 10.1007/s001220050249.
Article
PubMed
CAS
Google Scholar
Churchill GA, Doerge RW: Empirical threshold values for quantitative trait mapping. Genetics. 1994, 138: 963-971.
PubMed
CAS
PubMed Central
Google Scholar