Johnson SC, Treasurer JW, Bravo S, Nagasawa K, Kabata Z: A review of the impact of parasitic copepods on marine aquaculture. Zool Stud. 2004, 43: 229-243.
Google Scholar
Costello MJ: The global economic cost of sea lice to the salmonid farming industry. J Fish Dis. 2009, 32: 115-118. 10.1111/j.1365-2761.2008.01011.x.
Article
PubMed
Google Scholar
Krkosek M, Lewis MA, Volpe JP: Transmission dynamics of parasitic sea lice from farm to wild salmon. Proc Roy Soc B Biol Sci. 2005, 272: 689-696. 10.1098/rspb.2004.3027.
Article
Google Scholar
Tully O, Gargan P, Poole WR, Whelan KF: Spatial and temporal variation in the infestation of sea trout (Salmo trutta L.) by the caligid copepod Lepeophtheirus salmonis (Kroyer) in relation to sources of infection in Ireland. Parasitology. 1999, 119: 41-51. 10.1017/S003118209900445X.
Article
PubMed
Google Scholar
Bjorn PA, Finstad B: Salmon Lice, Lepeophtheirus Salmonis (Kroyer), Infestation in Sympatric Populations of Arctic Char, Salvelinus Alpinus (L.), And Sea Trout, Salmo Trutta (L.), In Areas Near and Distant From Salmon Farms. Ices J Mar Sci. 2002, 59: 131-139. 10.1006/jmsc.2001.1143.
Article
Google Scholar
Morton A, Routledge R, Peet C, Ladwig A: Sea lice (Lepeophtheirus salmonis) infection rates on juvenile pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon in the nearshore marine environment of British Columbia, Canada. Can J Fish Aquat Sci. 2004, 61: 147-157. 10.1139/f04-016.
Article
Google Scholar
Hamre LA, Eichner C, Caipang CM, Dalvin S, Bron JE, Nilsen F, Boxshall G, Skern-Mauritzen R: The Salmon Louse Lepeophtheirus salmonis (Copepoda: Caligidae) Life Cycle Has Only Two Chalimus Stages. PLoS ONE. 2013, 8 (9): e73539-10.1371/journal.pone.0073539.
Article
PubMed
CAS
PubMed Central
Google Scholar
Glover KA, Stolen AB, Messmer A, Koop BF, Torrissen O, Nilsen F: Population genetic structure of the parasitic copepod Lepeophtheirus salmonis throughout the Atlantic. Mar Ecol Prog Ser. 2011, 427: 161-172.
Article
Google Scholar
Tjensvoll K, Glover KA, Nylund A: Sequence variation in four mitochondrial genes of the salmon louse Lepeophtheirus salmonis. Dis Aquat Organ. 2006, 68: 251-259.
Article
PubMed
CAS
Google Scholar
Todd CD, Walker AM, Ritchie MG, Graves JA, Walker AF: Population genetic differentiation of sea lice (Lepeophtheirus salmonis) parasitic on Atlantic and Pacific salmonids: analyses of microsatellite DNA variation among wild and farmed hosts. Can J Fish Aquat Sci. 2004, 61: 1176-1190. 10.1139/f04-069.
Article
CAS
Google Scholar
Messmer AM, Rondeau EB, Jantzen SG, Lubieniecki KP, Davidson WS, Koop BF: Assessment of population structure in Pacific Lepeophtheirus salmonis (Kroyer) using single nucleotide polymorphism and microsatellite genetic markers. Aquaculture. 2011, 320: 183-192. 10.1016/j.aquaculture.2010.09.033.
Article
Google Scholar
Dawson LHJ, Pike AW, Houlihan DF, McVicar AH: Effects of salmon lice Lepeophtheirus salmonis on sea trout Salmo trutta at different times after seawater transfer. Dis Aquat Organ. 1998, 33: 179-186.
Article
PubMed
CAS
Google Scholar
Bjorn PA, Finstad B: The Development of Salmon Lice (Lepeophtheirus Salmonis) on Artificially Infected Post Smolts of Sea Trout (Salmo Trutta). Can J Zool. 1998, 76: 970-977. 10.1139/cjz-76-5-970.
Article
Google Scholar
Skugor S, Glover KA, Nilsen F, Krasnov A: Local and systemic gene expression responses of Atlantic salmon (Salmo salar L.) to infection with the salmon louse (Lepeophtheirus salmonis). BMC Genomics. 2008, 9: 498-10.1186/1471-2164-9-498.
Article
PubMed
PubMed Central
Google Scholar
Krasnov A, Skugor S, Todorcevic M, Glover KA, Nilsen F: Gene expression in Atlantic salmon skin in response to infection with the parasitic copepod Lepeophtheirus salmonis, cortisol implant, and their combination. BMC Genomics. 2012, 13: 130-10.1186/1471-2164-13-130.
Article
PubMed
CAS
PubMed Central
Google Scholar
Boulding EG, deWaard JR, Ang KP, Hebert PN: Population genetic structure of the salmon louse, Lepeophtheirus salmonis (Kroyer) on wild and farmed salmonids around the Pacific coast of Canada. Aquac Res. 2009, 40: 973-979. 10.1111/j.1365-2109.2008.02159.x.
Article
Google Scholar
Yazawa R, Yasuike M, Leong J, von Schalburg KR, Cooper GA, Beetz-Sargent M, Robb A, Davidson WS, Jones SRM, Koop BF: EST and Mitochondrial DNA Sequences Support a Distinct Pacific Form of Salmon Louse, Lepeophtheirus salmonis. Mar Biotechnol. 2008, 10: 741-749. 10.1007/s10126-008-9112-y.
Article
PubMed
CAS
Google Scholar
Rocha-Olivares A, Fleeger JW, Foltz DW: Decoupling of molecular and morphological evolution in deep lineages of a meiobenthic harpacticoid copepod. Mol Biol Evol. 2001, 18: 1088-1102. 10.1093/oxfordjournals.molbev.a003880.
Article
PubMed
CAS
Google Scholar
Marincovich L, Gladenkov AY: Evidence for an early opening of the Bering Strait. Nature. 1999, 397: 149-151. 10.1038/16446.
Article
CAS
Google Scholar
Johnson SC, Albright LJ: The developmental stages of Lepeophtheirus salmonis (Krøyer, 1837) (Copepoda, Caligidae). Can J Zool. 1991, 69: 929-950. 10.1139/z91-138.
Article
Google Scholar
Schram TA: Supplementary descriptions of the developmental stages of Lepeophtheirus salmonis (Krøyer, 1837) (Copepoda: Caligidae). Pathogens of Wild and Farmed Fish: Sea Lice. Edited by: Boxshall GA, Defaye D. 1993, Chichester, UK: Ellis Horwood, 30-47.
Google Scholar
Johnson SC, Albright LJ: Development, Growth, and Survival of Lepeophtheirus-Salmonis (Copepoda, Caligidae) under Laboratory Conditions. J Mar Biol Assoc UK. 1991, 71: 425-436. 10.1017/S0025315400051687.
Article
Google Scholar
Heuch PA, Nordhagen JR, Schram TA: Egg Production in the Salmon Louse [Lepeophtheirus Salmonis (Kroyer)] in Relation to Origin and Water Temperature. Aquac Res. 2000, 31: 805-814. 10.1046/j.1365-2109.2000.00512.x.
Article
Google Scholar
Johnson SC, Albright LJ: Comparative Susceptibility and Histopathology of the Response of Naive Atlantic, Chinook and Coho Salmon to Experimental-Infection with Lepeophtheirus-Salmonis (Copepoda, Caligidae). Dis Aquat Organ. 1992, 14: 179-193.
Article
Google Scholar
Bricknell IR, Dalesman SJ, O’Shea B, Pert CC, Luntz AJM: Effect of environmental salinity on sea lice Lepeophtheirus salmonis settlement success. Dis Aquat Organ. 2006, 71: 201-212.
Article
PubMed
Google Scholar
Jones S, Kim E, Dawe S: Experimental infections with Lepeophtheirus salmonis (Kroyer) on threespine sticklebacks, Gasterosteus aculeatus L., and juvenile Pacific salmon, Oncorhynchus spp. J Fish Dis. 2006, 29: 489-495. 10.1111/j.1365-2761.2006.00742.x.
Article
PubMed
CAS
Google Scholar
Jones SRM, Prosperi-Porta G, Kim E, Callow P, Hargreaves NB: The occurrence of Lepeophtheirus salmonis and Caligus clemensi (Copepoda : Caligidae) on three-spine stickleback Gasterosteus aculeatus in coastal British Columbia. J Parasitol. 2006, 92: 473-480. 10.1645/GE-685R1.1.
Article
PubMed
Google Scholar
Pert CC, Mordue AJ, O’Shea B, Bricknell IR: The settlement and reproductive success of Lepeophtheirus salmonis (Kroyer 1837; Copepoda: Caligidae) on atypical hosts. Aquac Res. 2012, 43: 799-805. 10.1111/j.1365-2109.2011.02891.x.
Article
Google Scholar
Lyndon AR, Toovey JPG: Occurrence of gravid salmon lice (Lepeophtheirus salmonis (Kroyer)) on saithe (Pollachius virens (L.)) from salmon farm cages. Bull Eur Assn Fish Pathol. 2001, 21: 84-85.
Google Scholar
Hamre LA, Glover KA, Nilsen F: Establishment and characterisation of salmon louse (Lepeophtheirus salmonis (Kroyer 1837)) laboratory strains. Parasitol Int. 2009, 58: 451-460. 10.1016/j.parint.2009.08.009.
Article
PubMed
Google Scholar
Hamre LA, Nilsen F: Individual fish tank arrays in studies of Lepeophtheirus salmonis and lice loss variability. Dis Aquat Organ. 2011, 97: 47-56. 10.3354/dao02397.
Article
PubMed
Google Scholar
Nolan DV, Martin SAM, Kelly Y, Glennon K, Palmer R, Smith T, McCormack GP, Powell R: Development of microsatellite PCR typing methodology for the sea louse, Lepeophtheirus salmonis (Kroyer). Aquac Res. 2000, 31: 815-822. 10.1046/j.1365-2109.2000.00514.x.
Article
Google Scholar
Nolan DV, Powell R: Geographic and temporal genetic structure in Lepeophtheirus salmonis from four salmon farms along the northwest and west coasts of Ireland: results from a microsatellite analysis. Hydrobiologia. 2009, 617: 55-63. 10.1007/s10750-008-9525-7.
Article
CAS
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28: 2731-2739. 10.1093/molbev/msr121.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tamura K, Nei M: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993, 10: 512-526.
PubMed
CAS
Google Scholar
Lee CE: Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate “populations”. Evolution. 2000, 54: 2014-2027.
Article
PubMed
CAS
Google Scholar
Ganz HH, Burton RS: Genetic Differentiation and Reproductive Incompatibility among Baja-California Populations of the Copepod Tigriopus-Californicus. Mar Biol. 1995, 123: 821-827. 10.1007/BF00349126.
Article
Google Scholar
Grishanin AK, Rasch EM, Dodson SI, Wyngaard GA: Genetic architecture of the cryptic species complex of Acanthocyclops vernalis (Crustacea : Copepoda). II. Crossbreeding experiments, cytogenetics, and a model of chromosomal evolution. Evolution. 2006, 60: 247-256.
PubMed
CAS
Google Scholar
Pritchard VL, Dimond L, Harrison JS, Velazquez CCS, Zieba JT, Burton RS, Edmands S: Interpopulation hybridization results in widespread viability selection across the genome in Tigriopus californicus. BMC Genet. 2011, 12: 54-
Article
PubMed
CAS
PubMed Central
Google Scholar
Willett CS: Deleterious epistatic interactions between electron transport system protein-coding loci in the copepod Tigriopus californicus. Genetics. 2006, 173: 1465-1477. 10.1534/genetics.105.051011.
Article
PubMed
CAS
PubMed Central
Google Scholar
Glover KA, Hamre LA, Skaala O, Nilsen F: A comparison of sea louse (Lepeophtheirus salmonis) infection levels in farmed and wild Atlantic salmon (Salmo salar L.) stocks. Aquaculture. 2004, 232: 41-52. 10.1016/S0044-8486(03)00454-X.
Article
Google Scholar
Glover KA, Nilsen F, Skaala O: Individual variation in sea lice (Lepeophtheirus salmonis) infection on Atlantic salmon (Salmo salar). Aquaculture. 2004, 241: 701-709. 10.1016/j.aquaculture.2004.07.030.
Article
Google Scholar
Glover KA, Nilsen F, Skaala O, Taggart JB, Teale AJ: Differences in Susceptibility to Sea Lice Infection Between a Sea Run and a Freshwater Resident Population of Brown Trout. J Fish Biol. 2001, 59: 1512-1519. 10.1111/j.1095-8649.2001.tb00216.x.
Article
Google Scholar
Edmands S: Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution. 1999, 53: 1757-1768. 10.2307/2640438.
Article
Google Scholar
Hebert PDN, Cywinska A, Ball SL, DeWaard JR: Biological identifications through DNA barcodes. Proc R Soc Lond Ser B-Biol Sci. 2003, 270: 313-321. 10.1098/rspb.2002.2218.
Article
CAS
Google Scholar
Hebert PDN, Ratnasingham S, deWaard JR: Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond Ser B-Biol Sci. 2003, 270: S96-S99. 10.1098/rsbl.2003.0025.
Article
CAS
Google Scholar
Bucklin A, Guarnieri M, Hill RS, Bentley AM, Kaartvedt S: Taxonomic and systematic assessment of planktonic copepods using mitochondrial COI sequence variation and competitive, species-specific PCR. Hydrobiologia. 1999, 401: 239-254.
Article
CAS
Google Scholar
Lefebure T, Douady CJ, Gouy M, Gibert J: Relationship between morphological taxonomy and molecular divergence within Crustacea: Proposal of a molecular threshold to help species delimitation. Mol Phyl Evol. 2006, 40: 435-447. 10.1016/j.ympev.2006.03.014.
Article
CAS
Google Scholar
Parent GJ, Plourde S, Turgeon J: Natural hybridization between Calanus finmarchicus and C. glacialis (Copepoda) in the Arctic and Northwest Atlantic. Limnol Oceanol. 2012, 57: 1057-1066. 10.4319/lo.2012.57.4.1057.
Article
CAS
Google Scholar
Bucklin A, Lajeunesse TC: Molecular-genetic variation of calanus-pacificus (copepoda, calanoida) - preliminary evaluation of genetic-structure and subspecific differentiation based on mtdna sequences. Calif Coop Ocean Fish Invest Rep. 1994, 35: 45-51.
Google Scholar
Nuwer M, Frost B, Armbrust EV: Population structure of the planktonic copepod Calanus pacificus in the North Pacific Ocean. Mar Biol. 2008, 156: 107-115.
Article
Google Scholar