Chisholm ST, Coaker G, Day B, Staskawicz BJ: Host-microbe interactions: shaping the evolution of the plant immune response. Cell. 2006, 124: 803-814. 10.1016/j.cell.2006.02.008.
Article
CAS
PubMed
Google Scholar
Jones JDG, Dangl JL: The plant immune system. Nature. 2006, 444: 323-329. 10.1038/nature05286.
Article
CAS
PubMed
Google Scholar
Yue JX, Meyers BC, Chen JQ, Tian D, Yang S: Tracing the origin and evolutionary history of plant nucleotide-binding site–leucine-rich repeat (NBS-LRR) genes. New Phytol. 2012, 193: 1049-1063. 10.1111/j.1469-8137.2011.04006.x.
Article
CAS
PubMed
Google Scholar
Chen X, Ronald PC: Innate immunity in rice. Trends Plant Sci. 2011, 16: 451-459. 10.1016/j.tplants.2011.04.003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW: Genome-wide analysis of NBS-LRR–encoding genes in Arabidopsis. Plant Cell. 2003, 15: 809-834. 10.1105/tpc.009308.
Article
PubMed Central
CAS
PubMed
Google Scholar
McHale L, Tan X, Koehl P, Michelmore RW: Plant NBS-LRR proteins: adaptable guards. Genome Biol. 2006, 7: 212-
Article
PubMed Central
PubMed
Google Scholar
Li J, Ding J, Zhang W, Zhang Y, Tang P, Chen JQ, Tian D, Yang S: Unique evolutionary pattern of numbers of gramineous NBS–LRR genes. Mol Genet Genomics. 2010, 283: 427-438. 10.1007/s00438-010-0527-6.
Article
CAS
PubMed
Google Scholar
Zhang XH, Feng Y, Cheng H, Tian DC, Yang SH, Chen JQ: Relative evolutionary rates of NBS-encoding genes revealed by soybean segmental duplication. Mol Genet Genomics. 2011, 285: 79-90. 10.1007/s00438-010-0587-7.
Article
CAS
PubMed
Google Scholar
Hulbert SH, Webb CA, Smith SM, Sun Q: Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol. 2001, 39: 285-312. 10.1146/annurev.phyto.39.1.285.
Article
CAS
PubMed
Google Scholar
Yang S, Gu T, Pan C, Feng Z, Ding J, Hang Y, Chen JQ, Tian D: Genetic variation of NBS-LRR class resistance genes in rice lines. Theor Appl Genet. 2008, 116: 165-177. 10.1007/s00122-007-0656-4.
Article
CAS
PubMed
Google Scholar
Hulbert SH: Structure and evolution of the rp1 complex conferring rust resistance in maize. Annu Rev Phytopathol. 1997, 35: 293-310. 10.1146/annurev.phyto.35.1.293.
Article
CAS
PubMed
Google Scholar
Chen Q, Han Z, Jiang H, Tian D, Yang S: Strong positive selection drives rapid diversification of R-genes in Arabidopsis relatives. J Mol Evol. 2010, 70: 137-148. 10.1007/s00239-009-9316-4.
Article
CAS
PubMed
Google Scholar
Kuang H, Caldwell KS, Meyers BC, Michelmore RW: Frequent sequence exchanges between homologs of RPP8 in Arabidopsis are not necessarily associated with genomic proximity. Plant J. 2008, 54: 69-80. 10.1111/j.1365-313X.2008.03408.x.
Article
CAS
PubMed
Google Scholar
Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW: Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell. 2004, 16: 2870-2894. 10.1105/tpc.104.025502.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dai LY, Liu XL, Xiao YH, Wang GL: Recent advances in cloning and characterization of disease resistance genes in rice. J Integ Plant Biol. 2007, 49: 112-119. 10.1111/j.1744-7909.2006.00413.x.
Article
CAS
Google Scholar
Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K: Loss of function of a proline-containing protein confers durable disease resistance in rice. Science. 2009, 325: 998-10.1126/science.1175550.
Article
CAS
PubMed
Google Scholar
Shang JJ, Tao Y, Chen XW, Zou Y, Lei CL, Wang J, Li XB, Zhao XF, Zhang MJ, Lu ZK, et al: Identification of a New Rice Blast Resistance Gene, Pid3, by Genome wide Comparison of Paired Nucleotide-Binding Site-Leucine-Rich Repeat Genes and Their Pseudogene Alleles Between the Two Sequenced Rice Genomes. Genetics. 2009, 182: 1303-1311. 10.1534/genetics.109.102871.
Article
PubMed Central
CAS
PubMed
Google Scholar
Qu SH, Liu GF, Zhou B, Bellizzi M, Zeng LR, Dai LY, Han B, Wang GL: The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics. 2006, 172: 1901-1914.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhou B, Qu SH, Liu GF, Dolan M, Sakai H, Lu GD, Bellizzi M, Wang GL: The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe In. 2006, 19: 1216-1228. 10.1094/MPMI-19-1216.
Article
CAS
Google Scholar
Dai LY, Wu J, Li XB, Wang XJ, Liu XL, Jantasuriyarat C, Kudrna D, Yu Y, Wing RA, Han B, et al: Genomic structure and evolution of the Pi2/9 locus in wild rice species. Theor Appl Genet. 2010, 121: 295-309. 10.1007/s00122-010-1310-0.
Article
CAS
PubMed
Google Scholar
Yang S, Feng Z, Zhang X, Jiang K, Jin X, Hang Y, Chen JQ, Tian D: Genome-wide investigation on the genetic variations of rice disease resistance genes. Plant Mol Biol. 2006, 62: 181-193. 10.1007/s11103-006-9012-3.
Article
CAS
PubMed
Google Scholar
Bergelson J, Kreitman M, Stahl EA, Tian D: Evolutionary dynamics of plant R-genes. Science. 2001, 292: 2281-10.1126/science.1061337.
Article
CAS
PubMed
Google Scholar
Meyers BC, Chin DB, Shen KA, Sivaramakrishnan S, Lavelle DO, Zhang Z, Michelmore RW: The major resistance gene cluster in lettuce is highly duplicated and spans several mega bases. Plant Cell. 1998, 10: 1817-1832.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhu Q, Ge S: Phylogenetic relationships among A‐genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytol. 2005, 167: 249-265. 10.1111/j.1469-8137.2005.01406.x.
Article
CAS
PubMed
Google Scholar
Watterson G: On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975, 7: 256-276. 10.1016/0040-5809(75)90020-9.
Article
CAS
PubMed
Google Scholar
Martin GB, Bogdanove AJ, Sessa G: Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol. 2003, 54: 23-61. 10.1146/annurev.arplant.54.031902.135035.
Article
CAS
PubMed
Google Scholar
Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW: Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell. 2004, 16: 2870-2894. 10.1105/tpc.104.025502.
Article
PubMed Central
CAS
PubMed
Google Scholar
Riely BK, Martin GB: Ancient origin of pathogen recognition specificity conferred by the tomato disease resistance gene Pto. Proc Natl Acad Sci USA. 2059, 2001: 98-
Google Scholar
Wei F, Wing RA, Wise RP: Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell. 2002, 14: 1903-1917. 10.1105/tpc.002238.
Article
PubMed Central
CAS
PubMed
Google Scholar
Michelmore RW, Meyers BC: Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 1998, 8: 1113-1130.
CAS
PubMed
Google Scholar
Tian D, Traw M, Chen J, Kreitman M, Bergelson J: Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature. 2003, 423: 74-77. 10.1038/nature01588.
Article
CAS
PubMed
Google Scholar
Rose LE, Bittner-Eddy PD, Langley CH, Holub EB, Michelmore RW, Beynon JL: The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics. 2004, 166: 1517-10.1534/genetics.166.3.1517.
Article
PubMed Central
CAS
PubMed
Google Scholar
Noël L, Moores TL, van der Biezen EA, Parniske M, Daniels MJ, Parker JE, Jones JDG: Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell. 1999, 11: 2099-2112.
Article
PubMed Central
PubMed
Google Scholar
Ellis JG, Lawrence GJ, Luck JE, Dodds PN: Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell. 1999, 11: 495-506.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ding J, Zhang W, Jing Z, Chen JQ, Tian D: Unique pattern of R-gene variation within populations in Arabidopsis. Mol Genet Genomics. 2007, 277: 619-629. 10.1007/s00438-007-0213-5.
Article
CAS
PubMed
Google Scholar
Jiang H, Wang C, Ping L, Tian D, Yang S: Pattern of LRR nucleotide variation in plant resistance genes. Plant Sci. 2007, 173: 253-261. 10.1016/j.plantsci.2007.05.010.
Article
CAS
Google Scholar
Zhang Y, Wang J, Zhang X, Chen JQ, Tian D, Yang S: Genetic signature of rice domestication shown by a variety of genes. J Mol Evol. 2009, 68: 393-402. 10.1007/s00239-009-9217-6.
Article
CAS
PubMed
Google Scholar
Wulff BBH, Thomas CM, Smoker M, Grant M, Jones JDG: Domain swapping and gene shuffling identify sequences required for induction of an Avr-dependent hypersensitive response by the tomato Cf-4 and Cf-9 proteins. Plant Cell. 2001, 13: 255-272.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rairdan GJ, Moffett P: Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell. 2006, 18: 2082-2093. 10.1105/tpc.106.042747.
Article
PubMed Central
CAS
PubMed
Google Scholar
The International Rice Genome Sequencing Project. [http://rgp.dna.affrc.go.jp/E/IRGSP/download.html]
Matsumoto T, Wu J, Kanamori H, Katayose Y, Fujisawa M, Namiki N, Mizuno H, Yamamoto K, Antonio BA, Baba T: The map-based sequence of the rice genome. Nature. 2005, 436: 793-800. 10.1038/nature03895.
Article
Google Scholar
Yu J, Hu S, Wang J, Wong GKS, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X: A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science. 2002, 296: 79-10.1126/science.1068037.
Article
CAS
PubMed
Google Scholar
Yu J, Wong GKS, Liu S, Wang J, Yang H: A comprehensive crop genome research project: the Super hybrid Rice Genome Project in China. Philos T R Soc B. 2007, 362: 1023-1034. 10.1098/rstb.2007.2031.
Article
CAS
Google Scholar
The Beijing Genomics Institute. http://rise2.genomics.org.cn/page/rice/index.jsp
The National Center for Genome Resources. [NCGR; http://www.ncgr.ac.cn/scientific_data.asp]
Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z: Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet. 2010, 42: 961-967. 10.1038/ng.695.
Article
CAS
PubMed
Google Scholar
Ammiraju JSS, Luo M, Goicoechea JL, Wang W, Kudrna D, Mueller C, Talag J, Kim HR, Sisneros NB, Blackmon B: The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res. 2006, 16: 140-147.
Article
PubMed Central
PubMed
Google Scholar
The Oryza bacterial artificial chromosome library resource. http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Nucleotides&PROGRAM=blastn&BLAST_SPEC=TraceArchive&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastSearch
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A: The Sorghum bicolor genome and the diversification of grasses. Nature. 2009, 457: 551-556. 10.1038/nature07723.
Article
CAS
PubMed
Google Scholar
Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, Barry K, Lucas S, Harmon-Smith M, Lail K: Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010, 463: 763-768. 10.1038/nature08747.
Article
CAS
Google Scholar
The Joint Genome Institute. http://genome.jgi-psf.org/Sorbi1/Sorbi1.home.html
The Brachypodium distachyon database. http://www.brachypodium.org
The_Arabidopsis_Genome_Initiative: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000, 408: 796-815. 10.1038/35048692.
Article
Google Scholar
Peng SQ, Huang FY, Sun GC, Liu EM, Sun YJ, Ai RX, Zhao JX, Bai SZ, Xiao FH: Studies on Durable Resistance to Blast Disease in Different Latitudes for Rice. Sci Agric Sin. 1996, 29: 52-28.
Google Scholar
Yu Z, Mackill D, Bonman J, Tanksley S: Tagging genes for blast resistance in rice via linkage to RFLP markers. Theor Appl Genet. 1991, 81: 471-476.
Article
CAS
PubMed
Google Scholar
Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D: Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics. 2004, 271: 402-415. 10.1007/s00438-004-0990-z.
Article
CAS
PubMed
Google Scholar
Pfam. http://pfam.janelia.org
SMART. http://smart.embl-heidelberg.d
SHORE. http://sourceforge.net/projects/shore/files
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32: 1792-1797. 10.1093/nar/gkh340.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28: 2731-2739. 10.1093/molbev/msr121.
Article
PubMed Central
CAS
PubMed
Google Scholar
Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009, 25: 1451-1452. 10.1093/bioinformatics/btp187.
Article
CAS
PubMed
Google Scholar
Ellis J, Dodds P, Pryor T: Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol. 2000, 3: 278-284. 10.1016/S1369-5266(00)00080-7.
Article
CAS
PubMed
Google Scholar
Data monkey. http://www.datamankey.org
Pond SL, Frost SD, Muse SV: HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005, 21: 676-679. 10.1093/bioinformatics/bti079.
Article
CAS
PubMed
Google Scholar
Pond SLK, Posada D, Gravenor MB, Woelk CH, Frost SDW: Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol. 2006, 23: 1891-1901. 10.1093/molbev/msl051.
Article
CAS
Google Scholar
Lynch M, Crease T: The analysis of population survey data on DNA sequence variation. Mol Biol Evol. 1990, 7: 377-394.
CAS
PubMed
Google Scholar
GENECONV1.81. http://www.math.wustl.edu/sawyer/geneconv
Weir B, Hill W: Estimating F-statistics. Annu Rev Genet. 2002, 36: 721-750.
Article
CAS
Google Scholar
The ARLEQUIN version 3.11. http://www.lgb.unige.ch/arequin
Hudson RR: A new statistic for detecting genetic differentiation. Genetics. 2011, 2000: 155-
Google Scholar