Nasmyth K, Haering CH: Cohesin: its roles and mechanisms. Annu Rev Genet. 2009, 43: 525-558. 10.1146/annurev-genet-102108-134233.
Article
CAS
PubMed
Google Scholar
Skibbens RV: Establishment of sister chromatid cohesion. Curr Biol. 2009, 19: R1126-1132. 10.1016/j.cub.2009.10.067.
Article
CAS
PubMed
Google Scholar
Lengronne A, McIntyre J, Katou Y, Kanoh Y, Hopfner KP, Shirahige K, Uhlmann F: Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol Cell. 2006, 23: 787-799. 10.1016/j.molcel.2006.08.018.
Article
CAS
PubMed
Google Scholar
Sawin KE, LeGuellec K, Philippe M, Mitchison TJ: Mitotic spindle organization by a plus-end-directed microtubule motor. Nature. 1992, 359: 540-543. 10.1038/359540a0.
Article
CAS
PubMed
Google Scholar
Gheber L, Kuo SC, Hoyt MA: Motile properties of the kinesin-related Cin8p spindle motor extracted from Saccharomyces cerevisiae cells. J Biol Chem. 1999, 274: 9564-9572. 10.1074/jbc.274.14.9564.
Article
CAS
PubMed
Google Scholar
Krishnan V, Nirantar S, Crasta K, Cheng AY, Surana U: DNA replication checkpoint prevents precocious chromosome segregation by regulating spindle behavior. Mol Cell. 2004, 16: 687-700. 10.1016/j.molcel.2004.11.001.
Article
CAS
PubMed
Google Scholar
Civelekoglu-Scholey G, Tao L, Brust-Mascher I, Wollman R, Scholey JM: Prometaphase spindle maintenance by an antagonistic motor-dependent force balance made robust by a disassembling lamin-B envelope. J Cell Biol. 2010, 188: 49-68. 10.1083/jcb.200908150.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ghosh SK, Hajra S, Paek A, Jayaram M: Mechanisms for chromosome and plasmid segregation. Annu Rev Biochem. 2006, 75: 211-241. 10.1146/annurev.biochem.75.101304.124037.
Article
CAS
PubMed
Google Scholar
Saunders W, Lengyel V, Hoyt MA: Mitotic spindle function in Saccharomyces cerevisiae requires a balance between different types of kinesin-related motors. Mol Biol Cell. 1997, 8: 1025-1033.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goshima G, Wollman R, Stuurman N, Scholey JM, Vale RD: Length control of the metaphase spindle. Curr Biol. 2005, 15: 1979-1988. 10.1016/j.cub.2005.09.054.
Article
CAS
PubMed
Google Scholar
Odde DJ: Mitotic spindle: disturbing a subtle balance. Curr Biol. 2005, 15: R956-959. 10.1016/j.cub.2005.11.015.
Article
CAS
PubMed
Google Scholar
Dumont S, Mitchison TJ: Force and length in the mitotic spindle. Curr Biol. 2009, 19: R749-761. 10.1016/j.cub.2009.07.028.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li YY, Yeh E, Hays T, Bloom K: Disruption of mitotic spindle orientation in a yeast dynein mutant. Proc Natl Acad Sci USA. 1993, 90: 10096-10100. 10.1073/pnas.90.21.10096.
Article
PubMed Central
CAS
PubMed
Google Scholar
Grill SW, Howard J, Schaffer E, Stelzer EH, Hyman AA: The distribution of active force generators controls mitotic spindle position. Science. 2003, 301: 518-521. 10.1126/science.1086560.
Article
CAS
PubMed
Google Scholar
Grill SW, Hyman AA: Spindle positioning by cortical pulling forces. Dev Cell. 2005, 8: 461-465. 10.1016/j.devcel.2005.03.014.
Article
CAS
PubMed
Google Scholar
Moore JK, Magidson V, Khodjakov A, Cooper JA: The spindle position checkpoint requires positional feedback from cytoplasmic microtubules. Curr Biol. 2009, 19: 2026-2030. 10.1016/j.cub.2009.10.020.
Article
PubMed Central
CAS
PubMed
Google Scholar
Toso A, Winter JR, Garrod AJ, Amaro AC, Meraldi P, McAinsh AD: Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly. J Cell Biol. 2009, 184: 365-372. 10.1083/jcb.200809055.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bouck DC, Bloom K: Pericentric chromatin is an elastic component of the mitotic spindle. Curr Biol. 2007, 17: 741-748. 10.1016/j.cub.2007.03.033.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bouck DC, Joglekar AP, Bloom KS: Design features of a mitotic spindle: balancing tension and compression at a single microtubule kinetochore interface in budding yeast. Annu Rev Genet. 2008, 42: 335-359. 10.1146/annurev.genet.42.110807.091620.
Article
PubMed Central
CAS
PubMed
Google Scholar
Walczak CE, Heald R: Mechanisms of mitotic spindle assembly and function. Int Rev Cytol. 2008, 265: 111-158.
Article
CAS
PubMed
Google Scholar
Glotzer M: The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nat Rev Mol Cell Biol. 2009, 10: 9-20.
Article
PubMed Central
CAS
PubMed
Google Scholar
Civelekoglu-Scholey G, Scholey JM: Mitotic force generators and chromosome segregation. Cell Mol Life Sci. 2010, 67: 2231-2250. 10.1007/s00018-010-0326-6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stern BM, Murray AW: Lack of tension at kinetochores activates the spindle checkpoint in budding yeast. Curr Biol. 2001, 11: 1462-1467. 10.1016/S0960-9822(01)00451-1.
Article
CAS
PubMed
Google Scholar
Biggins S, Murray AW: The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev. 2001, 15: 3118-3129. 10.1101/gad.934801.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tanaka T, Fuchs J, Loid J, Nasmyth K: Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat Cell Biol. 2000, 2: 492-499. 10.1038/35019529.
Article
CAS
PubMed
Google Scholar
Tanaka TU: Bi-orienting chromosomes: acrobatics on the mitotic spindle. Chromosoma. 2008, 117: 521-533. 10.1007/s00412-008-0173-5.
Article
PubMed
Google Scholar
Ng TM, Waples WG, Lavoie BD, Biggins S: Pericentromeric sister chromatid cohesion promotes kinetochore biorientation. Mol Biol Cell. 2009, 20: 3818-3827. 10.1091/mbc.E09-04-0330.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liras P, McCusker J, Mascioli S, Haber JE: Characterization of a mutation in yeast causing nonrandom chromosome loss during mitosis. Genetics. 1978, 88: 651-671.
PubMed Central
CAS
PubMed
Google Scholar
Skibbens RV: Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion. Genetics. 2004, 166: 33-42. 10.1534/genetics.166.1.33.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mayer ML, Pot I, Chang M, Xu H, Aneliunas V, Kwok T, Newitt R, Aebersold R, Boone C, Brown GW, Hieter P: Identification of protein complexes required for efficient sister chromatid cohesion. Mol Biol Cell. 2004, 15: 1736-1745. 10.1091/mbc.E03-08-0619.
Article
PubMed Central
CAS
PubMed
Google Scholar
Toth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, Nasmyth K: Yeast cohesin complex requires a conserved protein, Eco1p (Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev. 1999, 13: 320-333. 10.1101/gad.13.3.320.
Article
PubMed Central
CAS
PubMed
Google Scholar
Petronczki M, Chwalla B, Siomos MF, Yokobayashi S, Helmhart W, Deutschbauer AM, Davis RW, Watanabe Y, Nasmyth K: Sister-chromatid cohesion mediated by the alternative RF-CCtf18/Dcc1/Ctf8, the helicase Chl1 and the polymerase α-associated protein Ctf4 is essential for chromatid disjunction during meiosis II. J Cell Sci. 2004, 117: 3547-3559. 10.1242/jcs.01231.
Article
CAS
PubMed
Google Scholar
Spencer F, Gerring SL, Connelly C, Hieter P: Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae. Genetics. 1990, 124: 237-249.
PubMed Central
CAS
PubMed
Google Scholar
Gerring SL, Spencer F, Hieter P: The CHL1 (CTF1) gene product of Saccharomyces cerevisiae is important for chromosome transmission and normal cell cycle progression in G2/M. EMBO J. 1990, 9: 4347-4358.
PubMed Central
CAS
PubMed
Google Scholar
Holloway SL: CHL1 is a nuclear protein with an essential ATP binding site that exhibits a size-dependent effect on chromosome segregation. Nucleic Acids Res. 2000, 28: 3056-3064. 10.1093/nar/28.16.3056.
Article
PubMed Central
CAS
Google Scholar
Das SP, Sinha P: The budding yeast protein Chl1p has a role in transcriptional silencing, rDNA recombination and aging. Biochem Biophys Res Commun. 2005, 337: 167-172. 10.1016/j.bbrc.2005.09.034.
Article
CAS
PubMed
Google Scholar
Laha S, Das SP, Hajra S, Sau S, Sinha P: The budding yeast protein Chl1p is required to preserve genome integrity upon DNA damage in S-phase. Nucleic Acids Res. 2006, 34: 5880-5891. 10.1093/nar/gkl749.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ogiwara H, Ui A, Lai MS, Enomoto T, Seki M: Chl1 and Ctf4 are required for damage-induced recombination. Biochem Biophys Res Commun. 2007, 354: 222-226. 10.1016/j.bbrc.2006.12.185.
Article
CAS
PubMed
Google Scholar
Amann J, Kidd VJ, Lahti JM: Characterization of putative human homologues of the yeast chromosome transmission fidelity gene, CHL1. J Biol Chem. 1997, 272: 3823-3832. 10.1074/jbc.272.6.3823.
Article
CAS
PubMed
Google Scholar
Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S, Wahrer DCR, Sgroi DC, Lane WS, Haber DA, Livingston DM: BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell. 2001, 105: 149-160. 10.1016/S0092-8674(01)00304-X.
Article
CAS
PubMed
Google Scholar
Cantor S, Drapkin R, Zhang F, Lin Y, Han J, Pamidi S, Livingston DM: The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. Proc Natl Acad Sci USA. 2004, 101: 2357-2362. 10.1073/pnas.0308717101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Inoue A, Li T, Roby SK, Valentine MB, Inoue M, Boyd K, Kidd VJ, Lahti JM: Loss of ChlR1 helicase in mouse causes lethality due to the accumulation of aneuploid cells generated by cohesion defects and placental malformation. Cell Cycle. 2007, 6: 1646-1654. 10.4161/cc.6.13.4411.
Article
CAS
PubMed
Google Scholar
Parish JL, Rosa J, Wang X, Lahti JM, Doxsey SJ, Androphy EJ: The DNA helicase ChlR1 is required for sister chromatid cohesion in mammalian cells. J Cell Sci. 2006, 119: 4857-65. 10.1242/jcs.03262.
Article
CAS
PubMed
Google Scholar
Wu Y, Suhasini AN, Brosh RM: Welcome the family of FANCJ-like helicases to the block of genome stability maintenance proteins. Cell Mol Life Sci. 2009, 66: 1209-1222. 10.1007/s00018-008-8580-6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bachant J, Jessen SR, Kavanaugh SE, Fielding CS: The yeast S phase checkpoint enables replicating chromosomes to bi-orient and restrain spindle extension during S phase distress. J Cell Biol. 2005, 168: 999-1012. 10.1083/jcb.200412076.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hajra S: Kinetochore structure of the budding yeast Saccharomyces cerevisiae: a study using genetic and protein-protein interactions. Ph.D thesis. 2003, Jadavpur University, Kolkata
Google Scholar
Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson JN, Lu H, Ménard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T: Global mapping of the yeast genetic interaction network. Science. 2004, 303: 808-813. 10.1126/science.1091317.
Article
CAS
PubMed
Google Scholar
Elford HL: Effect of hydroxyurea on ribonucleotide reductase. Biochem Biophys Res Commun. 1968, 33: 129-135. 10.1016/0006-291X(68)90266-0.
Article
CAS
PubMed
Google Scholar
Slater ML: Effect of reversible inhibition of deoxyribonucleic acid synthesis on the yeast cell cycle. J Bacteriol. 1973, 113: 263-270.
PubMed Central
CAS
PubMed
Google Scholar
Alvino GM, Collingwood D, Murphy JM, Delrow J, Brewer BJ, Raghuraman MK: Replication in hydroxyurea: it's a matter of time. Mol Cell Biol. 2007, 27: 6396-6406. 10.1128/MCB.00719-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Branzei D, Foiani M: The checkpoint response to replication stress. DNA Repair. 2009, 8: 1038-1046. 10.1016/j.dnarep.2009.04.014.
Article
CAS
PubMed
Google Scholar
Bjergbaek L, Cobb JA, Tsai-Pflugfelder M, Gasser SM: Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance. EMBO J. 2004, 24: 405-417.
Article
PubMed Central
PubMed
Google Scholar
Paulovich AG, Hartwell LH: A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell. 1995, 82: 841-847. 10.1016/0092-8674(95)90481-6.
Article
CAS
PubMed
Google Scholar
Doheny KF, Sorger PK, Hyman AA, Tugendreich S, Spencer F, Hieter P: Identification of essential components of the S. cerevisiae kinetochore. Cell. 1993, 73: 761-774. 10.1016/0092-8674(93)90255-O.
Article
CAS
PubMed
Google Scholar
Ortiz J, Stemmann O, Rank S, Lechner J: A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev. 1999, 13: 1140-1155. 10.1101/gad.13.9.1140.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hyland KM, Kingsbury J, Koshland D, Hieter P: Ctf19p: A novel kinetochore protein in Saccharomyces cerevisiae and a potential link between the kinetochore and mitotic spindle. J Cell Biol. 1999, 145: 15-28. 10.1083/jcb.145.1.15.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goshima G, Yanagida M: Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast. Cell. 2000, 100: 619-633. 10.1016/S0092-8674(00)80699-6.
Article
CAS
PubMed
Google Scholar
He X, Asthana S, Sorger PK: Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell. 2000, 101: 763-775. 10.1016/S0092-8674(00)80888-0.
Article
CAS
PubMed
Google Scholar
Chang CR, Wu CS, Hom Y, Gartenberg MR: Targeting of cohesin by transcriptionally silent chromatin. Genes Dev. 2005, 19: 3031-3042. 10.1101/gad.1356305.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huang J, Moazed D: Sister chromatid cohesion in silent chromatin: each sister to her own ring. Genes Dev. 2006, 20: 132-137. 10.1101/gad.1398106.
Article
CAS
PubMed
Google Scholar
Michaelis C, Ciosk R, Nasmyth K: Cohesins: Chromosomal proteins that prevent premature separation of sister chromatids. Cell. 1997, 91: 35-45. 10.1016/S0092-8674(01)80007-6.
Article
CAS
PubMed
Google Scholar
Stead K, Aguilar C, Hartman T, Drexel M, Meluh P, Guacci V: Pds5p regulates the maintenance of sister chromatid cohesion and is sumoylated to promote the dissolution of cohesion. J Cell Biol. 2003, 163: 729-741. 10.1083/jcb.200305080.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fernius J, Marston AL: Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3. PLoS Genet. 2009, 5: e1000629-10.1371/journal.pgen.1000629.
Article
PubMed Central
PubMed
Google Scholar
Liu H, Liang F, Jin F, Wang Y: The coordination of centromere replication, spindle formation, and kinetochore-microtubule interaction in budding yeast. PLoS Genet. 2008, 4: e1000262-10.1371/journal.pgen.1000262.
Article
PubMed Central
PubMed
Google Scholar
Guacci V, Koshland D, Strunnikov A: A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell. 1997, 3: 47-57.
Article
Google Scholar
Poddar A, Roy N, Sinha P: MCM21 and MCM22, two novel genes of the yeast Saccharomyces cerevisiae are required for chromosome transmission. Mol Microbiol. 1999, 31: 349-360. 10.1046/j.1365-2958.1999.01179.x.
Article
CAS
PubMed
Google Scholar
Ghosh SK, Poddar A, Hajra S, Sanyal K, Sinha P: The IML3/MCM19 gene of Saccharomyces cerevisiae is required for a kinetochore-related process during chromosome segregation. Mol Genet Genomics. 2001, 265: 249-257. 10.1007/s004380000408.
Article
CAS
PubMed
Google Scholar
Rose MD, Novick P, Thomas JH, Botstein D, Fink GR: A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene. 1987, 60: 237-243. 10.1016/0378-1119(87)90232-0.
Article
CAS
PubMed
Google Scholar
Maine GT, Sinha P, Tye B-K: Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics. 1984, 106: 365-385.
PubMed Central
CAS
PubMed
Google Scholar
Vialard JE, Gilbert CS, Green CM, Lowndes NF: The budding yeast Rad9 checkpoint protein is subject to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J. 1998, 17: 5679-5688. 10.1093/emboj/17.19.5679.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sarkar S, Haldar S, Hajra S, Sinha P: The budding yeast protein Sum1 functions independently of its binding partners Hst1 and Sir2 histone deacetylases to regulate microtubule assembly. FEMS Yeast Res. 2010, 10: 660-673. 10.1111/j.1567-1364.2010.00655.x.
Article
CAS
PubMed
Google Scholar
Meluh PB, Koshland D: Budding yeast centromere composition and assembly as revealed by in vivo cross-linking. Genes Dev. 1997, 11: 3401-3412. 10.1101/gad.11.24.3401.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maiti AK, Sinha P: The mcm2 mutation of yeast affects replication, rather than segregation or amplification of the two micron plasmid. J Mol Biol. 1992, 224: 545-558. 10.1016/0022-2836(92)90543-S.
Article
CAS
PubMed
Google Scholar
Sanyal K: Cloning and characterization of MCM16 and MCM18 genes of Saccharomyces cerevisiae required for chromosome segregation. Ph.D thesis. 1999, Jadavpur University, Kolkata
Google Scholar
Ghosh SK, Sau S, Lahiri S, Lohia A, Sinha P: The Iml3 protein of the budding yeast is required for the prevention of precocious sister chromatid separation in meiosis I and for sister chromatid disjunction in meiosis II. Curr Genet. 2004, 46: 82-91.
Article
CAS
PubMed
Google Scholar