Li SZ, Zhang SP, Li H. A HOPS protein, CfVps39, is required for appressorium formation, environmental stress response and vacuolar fusion of Colletotrichum fructicola. Forest Pathol. 2021;51(4):1–10.
Article
Google Scholar
Chen YZ, Luo J, Wang R, Chen LS, Wang XN. Present situation and prospect of oil tea industry in China. Grain Sci Tech Econ. 2013;38(1):10–2.
Google Scholar
Zhang LL, Wang YM, Wu DM, Xu M, Chen JH. Comparisons of antioxidant activity and total phenolics of Camellia oleifera Abel fruit hull from different regions of China. J Med Plants Res. 2010;4(14):1420–6.
Google Scholar
Xu LP, Tan GJ. Epidemic of Camellia oleifera diseases and their relations to the ecological conditions. J Anhui Agri Univ. 2015;42(2):272–5.
Google Scholar
Chen SC, Tian ZJ, Guo LX. Occurrence and spread of Camellia anthracnose. J Plant Protection. 1965;03:207–18.
Google Scholar
Jin AX, Zhou GY, Li H. Progress problem and prospect of oil Camelliae anthracnose (Colletotrichum gloeosporioides ) research. Forest Pest Dis. 2009;28(2):27–31.
Google Scholar
Bonifacino JS, Hurley JH. Retromer. Curr Opin Cell Biol. 2008;20(4):427–36.
Article
CAS
Google Scholar
Effantin G, Hierro A, Rojas A, Rojas R, Murthy N, Kajava A, Bonifacino J, Hurley J, Steven A. Functional architecture of the retromer cargo-recognition complex. Microsc Microanal. 2008;14(S2):1568–9.
Article
Google Scholar
Wassmer T, Attar N, Harterink M, Van Weering JR, Traer CJ, Oakley J, Goud B, Stephens DJ, Verkade P, Korswagen HC, Cullen PJ. The Retromer coat complex coordinates endosomalsorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev Cell. 2009;17:110–22.
Article
CAS
Google Scholar
Hierro A, Rojas AL, Rojas R, Murthy N, Effantin G, Kajava AV, Steven AC, Bonifacino JS, Hurley JH. Functional architectureof the retromer cargo-recognition complex. Nature. 2007;449(7165):1063–7.
Article
CAS
Google Scholar
Seaman MNJ, McCaffery JM, Emr SD. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J Cell Biol. 1998;142(3):665–81.
Article
CAS
Google Scholar
Nothwehr SF, Ha SA, Bruinsma P. Sorting of yeast membrane proteins into an endosome-to-Golgi pathway involves direct interaction of their cytosolic domains with Vps35p. J Cell Biol. 2000;151:297–310.
Article
CAS
Google Scholar
Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS. Role of the mammalian retromer in sorting of the cationindependent mannose 6-phosphate receptor. J Cell Biol. 2004;165:123–33.
Article
CAS
Google Scholar
Wang ZY, Jenkinson JM, Holcombe LJ, Soanes DM, Talbot NJ. The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea. Biochemical Society Transactions. 2005;33(2):384–8.
Article
CAS
Google Scholar
Li H, Zhou GY, Liu JA, Xu JP. Population genetic analyses of the fungal pathogen Colletotrichum fructicola on tea-Oil trees in China. PLoS One. 2016;11(6):e0156841.
Article
Google Scholar
Seaman MNJ. Recycle your receptors with retromer. Trends Cell Biol. 2005;15(2):68–75.
Article
CAS
Google Scholar
Tsika E, Glauser L, Moser R, Fiser A, Daniel G, Sheerin UM, Lees A, Troncoso JC, Lewis PA, Bandopadhyay R, Schneider BL, Moore DJ. Parkinson’s disease-linked mutations in VPS35 induce dopaminergic neurodegeneration. Hum Mol Genet. 2014;23:4621–38.
Article
CAS
Google Scholar
Wen L, Tang FL, Hong Y, Luo SW, Wang CL, He W, Shen C, Jung JU, Xiong F, Lee Dh, Zhang QG, Brann D, Kim TW, Yan R, Mei L, Xiong WC. VPS35 haploinsufficiency increases Alzheimer’s disease neuropathology. J Cell Biol. 2011;195(5):765–79.
Article
CAS
Google Scholar
Zheng WH, Zhou J, He YL, Xie QR, Chen AH, Zheng HW, Shi L, Zhao Xu, Zhang CK, Huang QP, Fang KH, Lu GD, Ebbole DJ, Li GP, Naqvi NI, Wang ZH, Xu JR. Retromer is essential for autophagy-dependent plant infection by the rice blast fungus. PLoS Genetics. 2015;11(12):e1005704.
Article
Google Scholar
Zheng W, Zheng H, Zhao X, Zhang Y, Xie Q, Lin X, Chen A, Yu W, Lu G, Shim WB, Zhou J, Wang Z. Retrograde trafficking from the endosome to the trans-Golgi network mediated by the retromer is required for fungal development and pathogenicity in Fusarium graminearum. New Phytol. 2016;210(4):1327-43.
Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response. Cell. 2006;124(4):803–14.
Article
CAS
Google Scholar
Kishi-Kaboshi M, Okada K, Kurimoto L, Murakami S, Umezawa T, Shibuya N, Yamane H, Miyao A, Takatsuji H, Takahashi A, Hirochika H. A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J. 2010;63(4):599–612.
Article
CAS
Google Scholar
Jeon J, Goh J, Yoo S, Chi MH, Choi J, Rho HS, Park J, Han SS, Kim BR, Park SY. A putative MAP kinase kinase kinase, MCK1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Molecular Plant-microbe Interactions. 2008;21(5):525–34.
Article
CAS
Google Scholar
Samalova M, Mélida H, Vilaplana F, Bulone V, Soanes DM, Talbot NJ, Gurr SJ. The β-1, 3-glucanosyltransferases (Gels) affect the structure of the rice blast fungal cell wall during appressorium-mediated plant infection. Cell Microbiol. 2017;19(3):e12659.
Article
Google Scholar
Elorza MV, Rico H, Sentandreu R. Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells. J Gen Microbiol. 1983;129(5):1577–82.
CAS
PubMed
Google Scholar
Imai K, Noda Y, Adachi H, Yoda K. A novel endoplasmic reticulum membrane protein Rcr1 regulates chitin deposition in the cell wall of Saccharomyces cerevisiae. J Biol Chem. 2005;280(9):8275–84.
Article
CAS
Google Scholar
Bechinger C, Giebel KF, Schnell M, Leiderer P, Deising HB, Bastmeyer M. Optical Measurements of invasive forces exerted by appressoria of a plant pathogenic fungus. Science. 1999;285(5435):1896–9.
Article
CAS
Google Scholar
Gupta A, Chattoo BB. A novel gene MGA1 is required for appressorium formation in Magnaporthe grisea. Fungal Genet Biol. 2007;44(11):1157–69.
Article
CAS
Google Scholar
Veneault-Fourrey C, Parisot D, Gourgues M, Laugé R, Lebrun MH, Langin T. The tetraspanin gene ClPLS1 is essential for appressorium-mediated penetration of the fungal pathogen Colletotrichum lindemuthianum. Fungal Genet Biol. 2005;42(4):306–18.
Article
CAS
Google Scholar
Zhang SP, Guo Y, Chen SQ, Li H. The histone acetyltransferase CfGcn5 regulates growth, development, and pathogenicity in the anthracnose fungus Colletotrichum fructicola on the tea-Oil tree. Front Microbiol. 2021;12:680415.
Article
Google Scholar
Li SZ, Zhang SP, Li B, Li H. The SNARE protein CfVam7 is required for growth, endoplasmic reticulum stress response, and pathogenicity of Colletotrichum fructicola. Front Microbiol. 2021;12:736066.
Article
Google Scholar
Badaruddin M, Holcombe LJ, Wilson RA, Wang ZY, Kershaw MJ, Talbot NJ, Dodds PN. Glycogen metabolic genes are involved in trehalose-6-Phosphate synthase-Mediated regulation of pathogenicity by the rice blast fungus Magnaporthe oryzae. PLoS Pathog. 2013;9(10):e1003604.
Article
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
Google Scholar
Chen CJ, Chen H, Zhang Y, Thomas MR, Frank MH, He YH, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202. https://doi.org/10.1016/j.molp.2020.06.009.
Article
CAS
PubMed
Google Scholar
Liu Z, Friesen TL. Polyethylene Glycol (PEG)-Mediated Transformation in Filamentous Fungal Pathogens. Methods Mol Biol. 2012;835(21):365–75.
Article
CAS
Google Scholar
Zheng ZT, Gao T, Zhang Y, Hou YP, Wang JX, Zhou MG. FgFim, a key protein regulating resistance to the fungicide JS399-19, asexual and sexual development, stress responses and virulence in Fusarium graminearum. Mol Plant Pathol. 2014;15(5):488–99.
Article
CAS
Google Scholar
Bourett TM, Sweigard JA, Czymmek KJ, Carroll A, Howard RJ. Reef coral fluorescent proteins for visualizing fungal pathogens. Fungal Genet Biol. 2002;37(3):211–20.
Article
CAS
Google Scholar
Jensen EC. Quantitative analysis of histological staining and fluorescence using Image J. Anatomical Record. 2013;296(3):378–81.
Article
Google Scholar
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–8.
Article
CAS
Google Scholar