Weiss G. Iron and immunity: a double-edged sword. Eur J Clin Investig. 2002;32:70–8.
Article
CAS
Google Scholar
Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015;15(8):500–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
LaRock DL, Chaudhary A, Miller SI. Salmonellae interactions with host processes. Nat Rev Microbiol. 2015;13(4):191–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, et al. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis. 2010;50(6):882–9.
Article
PubMed
Google Scholar
Schaible UE, Kaufmann SH. Iron and microbial infection. Nat Rev Microbiol. 2004;2(12):946–53.
Article
CAS
PubMed
Google Scholar
Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa RJ, Contreras H, et al. Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe. 2013;14(1):26–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haraga A, Ohlson MB, Miller SI. Salmonellae interplay with host cells. Nat Rev Microbiol. 2008;6(1):53–66.
Article
CAS
PubMed
Google Scholar
Andrews SC, Robinson AK, Rodríguez-Quiñones F. Bacterial iron homeostasis. FEMS Microbiol Rev. 2003;27(2–3):215–37.
Article
CAS
PubMed
Google Scholar
Raymond KN, Dertz EA, Kim SS. Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci. 2003;100(7):3584–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D-K, Jeong J-H, Lee J-M, Kim KS, Park S-H, Kim YD, et al. Inverse agonist of estrogen-related receptor γ controls Salmonella typhimurium infection by modulating host iron homeostasis. Nat Med. 2014;20(4):419–24.
Article
CAS
PubMed
Google Scholar
Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130(5):797–810.
Article
CAS
PubMed
Google Scholar
Bjarnason J, Southward CM, Surette MG. Genomic profiling of iron-responsive genes in Salmonella enterica serovar typhimurium by high-throughput screening of a random promoter library. J Bacteriol. 2003;185(16):4973–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
McHugh JP, Rodríguez-Quiñones F, Abdul-Tehrani H, Svistunenko DA, Poole RK, Cooper CE, et al. Global iron-dependent gene regulation in Escherichia coli: a new mechanism for iron homeostasis. J Biol Chem. 2003;278(32):29478–86.
Article
CAS
PubMed
Google Scholar
Yang Y, Harris DP, Luo F, Xiong W, Joachimiak M, Wu L, et al. Snapshot of iron response in Shewanella oneidensis by gene network reconstruction. BMC Genomics. 2009;10(1):1–17.
Article
CAS
Google Scholar
Klitgaard K, Friis C, Angen Ø, Boye M. Comparative profiling of the transcriptional response to iron restriction in six serotypes of Actinobacillus pleuropneumoniae with different virulence potential. BMC Genomics. 2010;11(1):1–17.
Article
CAS
Google Scholar
Lo M, Murray GL, Khoo CA, Haake DA, Zuerner RL, Adler B. Transcriptional response of Leptospira interrogans to iron limitation and characterization of a PerR homolog. Infect Immun. 2010;78(11):4850–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eijkelkamp BA, Hassan KA, Paulsen IT, Brown MH. Investigation of the human pathogen Acinetobacter baumannii under iron limiting conditions. BMC Genomics. 2011;12(1):1–14.
Article
CAS
Google Scholar
Kim JN, Kwon YM. Identification of target transcripts regulated by small RNA RyhB homologs in Salmonella: RyhB-2 regulates motility phenotype. Microbiol Res. 2013;168(10):621–9.
Article
CAS
PubMed
Google Scholar
Remes B, Berghoff BA, Förstner KU, Klug G. Role of oxygen and the OxyR protein in the response to iron limitation in Rhodobacter sphaeroides. BMC Genomics. 2014;15(1):1–11.
Article
CAS
Google Scholar
Kröger C, Colgan A, Srikumar S, Händler K, Sivasankaran SK, Hammarlöf DL, et al. An infection-relevant transcriptomic compendium for Salmonella enterica serovar typhimurium. Cell Host Microbe. 2013;14(6):683–95.
Article
PubMed
CAS
Google Scholar
Outten FW, Djaman O, Storz G. A suf operon requirement for Fe–S cluster assembly during iron starvation in Escherichia coli. Mol Microbiol. 2004;52(3):861–72.
Article
CAS
PubMed
Google Scholar
Karash S, Liyanage R, Qassab A, Lay JO, Kwon YM. A comprehensive assessment of the genetic determinants in Salmonella typhimurium for resistance to hydrogen peroxide using proteogenomics. Sci Rep. 2017;7(1):1–15.
Article
CAS
Google Scholar
Solaimanpour S, Sarmiento F, Mrazek J. Tn-seq explorer: a tool for analysis of high-throughput sequencing data of transposon mutant libraries. Plos One. 2015;10(5):e0126070.
Article
PubMed
PubMed Central
CAS
Google Scholar
Karash S, Kwon YM. Iron-dependent essential genes in Salmonella Typhimurium. BMC Genomics. 2018;19(1):1–13.
Article
CAS
Google Scholar
Wang M, Qi L, Xiao Y, Qin C, Zhang H, Sheng Y, et al. SufC may promote the survival of Salmonella enterica serovar Typhi in macrophages. Microb Pathog. 2015;85:40–3.
Article
CAS
PubMed
Google Scholar
Huet G, Daffé M, Saves I. Identification of the mycobacterium tuberculosis SUF machinery as the exclusive mycobacterial system of [Fe-S] cluster assembly: evidence for its implication in the pathogen's survival. J Bacteriol. 2005;187(17):6137–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee K-C, Yeo W-S, Roe J-H. Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli. J Bacteriol. 2008;190(24):8244–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vergnes A, Viala JP, Ouadah-Tsabet R, Pocachard B, Loiseau L, Méresse S, et al. The iron–sulfur cluster sensor IscR is a negative regulator of Spi1 type III secretion system in Salmonella enterica. Cell Microbiol. 2017;19(4):e12680.
Article
CAS
Google Scholar
Romsang A, Duang-Nkern J, Leesukon P, Saninjuk K, Vattanaviboon P, Mongkolsuk S. The iron-Sulphur cluster biosynthesis regulator IscR contributes to iron homeostasis and resistance to oxidants in Pseudomonas aeruginosa. Plos One. 2014;9(1):e86763.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim S-H, Lee B-Y, Lau GW, Cho Y-H. IscR modulates catalase a (KatA) activity, peroxide resistance, and full virulence of Pseudomonas aeruginosa PA14. J Microbiol Biotechnol. 2009;19(12):1520–6.
Article
CAS
PubMed
Google Scholar
Giel JL, Rodionov D, Liu M, Blattner FR, Kiley PJ. IscR-dependent gene expression links iron-Sulphur cluster assembly to the control of O2-regulated genes in Escherichia coli. Mol Microbiol. 2006;60(4):1058–75.
Article
CAS
PubMed
Google Scholar
Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F. Reprint of: Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2013;1827(8–9):923–37.
Article
CAS
Google Scholar
Angelini S, Gerez C, Ollagnier-de Choudens S, Sanakis Y, Fontecave M, Barras F, et al. NfuA, a new factor required for maturing Fe/S proteins in Escherichia coli under oxidative stress and iron starvation conditions. J Biol Chem. 2008;283(20):14084–91.
Article
CAS
PubMed
Google Scholar
Romsang A, Duang-Nkern J, Saninjuk K, Vattanaviboon P, Mongkolsuk S. Pseudomonas aeruginosa nfuA: gene regulation and its physiological roles in sustaining growth under stress and anaerobic conditions and maintaining bacterial virulence. Plos One. 2018;13(8):e0202151.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cao D, Ji W, Fu Q, Lu C, Wang H, Sun J, et al. Escherichia coli nfuA is essential for maintenance of Shiga toxin phage Min27 lysogeny under iron-depleted condition. FEMS Microbiol Lett. 2015;362(19):fnv149.
Article
PubMed
CAS
Google Scholar
Zimbler DL, Park TM, Arivett BA, Penwell WF, Greer SM, Woodruff TM, et al. Stress response and virulence functions of the Acinetobacter baumannii NfuA Fe-S scaffold protein. J Bacteriol. 2012;194(11):2884–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fontecave M, Eliasson R, Reichard P. NAD (P) H: flavin oxidoreductase of Escherichia coli. A ferric iron reductase participating in the generation of the free radical of ribonucleotide reductase. J Biol Chem. 1987;262(25):12325–31.
Article
CAS
PubMed
Google Scholar
Woodmansee AN, Imlay JA. Reduced Flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. J Biol Chem. 2002;277(37):34055–66.
Article
CAS
PubMed
Google Scholar
Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G. Maturation of cytosolic iron-sulfur proteins requires glutathione. J Biol Chem. 2002;277(30):26944–9.
Article
CAS
PubMed
Google Scholar
de Haan CP, Llarena A-K, Revez J, Hänninen M-L. Association of Campylobacter jejuni metabolic traits with multilocus sequence types. Appl Environ Microbiol. 2012;78(16):5550–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang G, Ducatelle R, De Bruyne E, Joosten M, Bosschem I, Smet A, et al. Role of γ-glutamyltranspeptidase in the pathogenesis of helicobacter suis and helicobacter pylori infections. Vet Res. 2015;46(1):1–14.
Article
CAS
Google Scholar
Thorgersen MP, Downs DM. Analysis of yggX and gshA mutants provides insights into the labile iron pool in Salmonella enterica. J Bacteriol. 2008;190(23):7608–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yeung N, Gold B, Liu N, Prathapam R, Sterling H, Willams E, et al. The E. coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster containing complexes. Biochemistry. 2011;50(41):8957–69.
Article
CAS
PubMed
Google Scholar
Chenault SS, Earhart CF. Identification of hydrophobic proteins FepD and FepG of the Escherichia coli ferrienterobactin permease. Microbiology. 1992;138(10):2167–71.
CAS
Google Scholar
Crouch MLV, Castor M, Karlinsey JE, Kalhorn T, Fang FC. Biosynthesis and IroC-dependent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar typhimurium. Mol Microbiol. 2008;67(5):971–83.
Article
CAS
PubMed
Google Scholar
Moeck GS, Coulton JW. TonB-dependent iron acquisition: mechanisms of siderophore-mediated active transport. Mol Microbiol. 1998;28(4):675–81.
Article
CAS
PubMed
Google Scholar
Tsolis RM, Bäumler AJ, Heffron F. Role of Salmonella typhimurium Mn-superoxide dismutase (SodA) in protection against early killing by J774 macrophages. Infect Immun. 1995;63(5):1739–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raina S, Missiakas D, Georgopoulos C. The rpoE gene encoding the sigma E (sigma 24) heat shock sigma factor of Escherichia coli. EMBO J. 1995;14(5):1043–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alba BM, Zhong HJ, Pelayo JC, Gross CA. degS (hhoB) is an essential Escherichia coli gene whose indispensable function is to provide σE activity. Mol Microbiol. 2001;40(6):1323–33.
Article
CAS
PubMed
Google Scholar
Rowley G, Spector M, Kormanec J, Roberts M. Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol. 2006;4(5):383–94.
Article
CAS
PubMed
Google Scholar
Amar A, Pezzoni M, Pizarro RA, Costa CS. New envelope stress factors involved in σE activation and conditional lethality of rpoE mutations in Salmonella enterica. Microbiology. 2018;164(10):1293–307.
Article
CAS
PubMed
Google Scholar
Rowley G, Stevenson A, Kormanec J, Roberts M. Effect of inactivation of degS on Salmonella enterica serovar typhimurium in vitro and in vivo. Infect Immun. 2005;73(1):459–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mo E, Peters SE, Willers C, Maskell DJ, Charles IG. Single, double and triple mutants of Salmonella enterica serovar typhimurium degP (htrA), degQ (hhoA) and degS (hhoB) have diverse phenotypes on exposure to elevated temperature and their growth in vivo is attenuated to different extents. Microb Pathog. 2006;41(4–5):174–82.
Article
CAS
PubMed
Google Scholar
Muller C, Bang IS, Velayudhan J, Karlinsey J, Papenfort K, Vogel J, et al. Acid stress activation of the σE stress response in Salmonella enterica serovar typhimurium. Mol Microbiol. 2009;71(5):1228–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Overall CC, Nakayasu ES, Kidwai AS, Jones MB, Johnson RC, et al. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σE-regulated SPI-2 gene expression. Front Microbiol. 2015;6:27.
Article
PubMed
PubMed Central
Google Scholar
Zhang H, Jia Y, Xie X, Wang M, Zheng Y, Xu S, et al. RpoE promotes invasion and intracellular survival by regulating SPI-1 and SPI-2 in Salmonella enterica serovar Typhi. Future Microbiol. 2016;11(8):1011–24.
Article
CAS
PubMed
Google Scholar
Li X-Z, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria. Clin Microbiol Rev. 2015;28(2):337–418.
Article
PubMed
PubMed Central
Google Scholar
Barbier M, Boehm DT, Sen-Kilic E, Bonnin C, Pinheiro T, Hoffman C, et al. Modulation of pertussis and adenylate cyclase toxins by sigma factor RpoE in Bordetella pertussis. Infect Immun. 2017;85(1):e00565–16.
Article
CAS
PubMed
Google Scholar
Niederhoffer EC, Naranjo CM, Bradley KL, Fee JA. Control of Escherichia coli superoxide dismutase (sodA and sodB) genes by the ferric uptake regulation (fur) locus. J Bacteriol. 1990;172(4):1930–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Yi L, Zhang J, Sun L, Wen W, Zhang C, et al. Functional analysis of superoxide dismutase of Salmonella typhimurium in serum resistance and biofilm formation. J Appl Microbiol. 2018;125(5):1526–33.
Article
CAS
PubMed
Google Scholar
Elliott T, Avissar Y, Rhie G-E, Beale S. Cloning and sequence of the Salmonella typhimurium hemL gene and identification of the missing enzyme in hemL mutants as glutamate-1-semialdehyde aminotransferase. J Bacteriol. 1990;172(12):7071–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koo MS, Lee JH, Rah SY, Yeo WS, Lee JW, Lee KL, et al. A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J. 2003;22(11):2614–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melo AM, Bandeiras TM, Teixeira M. New insights into type II NAD (P) H: quinone oxidoreductases. Microbiol Mol Biol Rev. 2004;68(4):603–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conter A, Menchon C, Gutierrez C. Role of DNA supercoiling and rpoS sigma factor in the osmotic and growth phase-dependent induction of the gene osmE of Escherichia coli K12. J Mol Biol. 1997;273(1):75–83.
Article
CAS
PubMed
Google Scholar
Chan F-Y, Torriani A. PstB protein of the phosphate-specific transport system of Escherichia coli is an ATPase. J Bacteriol. 1996;178(13):3974–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Critzer FJ, D'SOUZA DH, Saxton AM, Golden DA. Increased transcription of the phosphate-specific transport system of Escherichia coli O157: H7 after exposure to sodium benzoate. J Food Prot. 2010;73(5):819–24.
Article
CAS
PubMed
Google Scholar
Rensing C, Mitra B, Rosen BP. The zntA gene of Escherichia coli encodes a Zn (II)-translocating P-type ATPase. Proc Natl Acad Sci. 1997;94(26):14326–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang K, Wang D, Frederiksen RF, Rensing C, Olsen JE, Fresno AH. Investigation of the role of genes encoding zinc exporters zntA, zitB, and fieF during Salmonella typhimurium infection. Front Microbiol. 2018;8:2656.
Article
PubMed
PubMed Central
Google Scholar
Frawley ER, Karlinsey JE, Singhal A, Libby SJ, Doulias P-T, Ischiropoulos H, et al. Nitric oxide disrupts zinc homeostasis in Salmonella enterica serovar typhimurium. MBio. 2018;9(4):e01040–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, et al. Zinc is a novel intracellular second messenger. J Cell Biol. 2007;177(4):637–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Foti JJ, Devadoss B, Winkler JA, Collins JJ, Walker GC. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science. 2012;336(6079):315–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murray EL, Conway T. Multiple regulators control expression of the Entner-Doudoroff aldolase (Eda) of Escherichia coli. J Bacteriol. 2005;187(3):991–1000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall BG, Acar H, Nandipati A, Barlow M. Growth rates made easy. Mol Biol Evol. 2014;31(1):232–8.
Article
CAS
PubMed
Google Scholar
Karash S, Jiang T, Samarth D, Chandrashekar R, Kwon YM. Preparation of transposon library and Tn-Seq amplicon library for Salmonella typhimurium. Methods Mol Biol. 2019;2016:3–15.
Article
CAS
PubMed
Google Scholar
Martínez-García E, Calles B, Arévalo-Rodríguez M, De Lorenzo V. pBAM1: an all-synthetic genetic tool for analysis and construction of complex bacterial phenotypes. BMC Microbiol. 2011;11(1):1–13.
Article
CAS
Google Scholar
DeJesus MA, Ambadipudi C, Baker R, Sassetti C, Ioerger TR. TRANSIT-a software tool for Himar1 TnSeq analysis. Plos Comput Biol. 2015;11(10):e1004401.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar