Shen ZG, Wang HP. Molecular players involved in temperature-dependent sex determination and sex differentiation in teleost fish. Genet Sel Evol. 2014;46(1):26.
Article
PubMed
PubMed Central
Google Scholar
Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture. 2002;208:191–364.
Article
CAS
Google Scholar
Sun LX, Teng J, Zhao Y, et al. Gonad transcriptome analysis of High-temperature-treated females and High-temperature-induced sex-reversed Neomales in Nile Tilapia. Int J Mol Sci. 2018;19(3).
Shao C, Li Q, Chen S, et al. Epigenetic modification and inheritance in sexual reversal of fish. Genome Res. 2014;24(4):604–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan Z, Zou Y, Jiao S, et al. Significant association of cyp19a promoter methylation with environmental factors and gonadal differentiation in olive flounder Paralichthys olivaceus. Comp Biochem Physiol A Mol Integr Physiol. 2017;208:70–9.
Article
CAS
PubMed
Google Scholar
Diaz N, Piferrer F. Lasting effects of early exposure to temperature on the gonadal transcriptome at the time of sex differentiation in the European sea bass, a fish with mixed genetic and environmental sex determination. BMC Genomics. 2015;16:679.
Article
PubMed
PubMed Central
CAS
Google Scholar
Uchida D, Yamashita M, Kitano T, et al. An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex-reversal. Comp Biochem Physiol A Mol Integr Physiol. 2004;137(1):11–20.
Article
PubMed
CAS
Google Scholar
Navarro-Martin L, Vinas J, Ribas L, et al. DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet. 2011;7(12):e1002447.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge C, Ye J, Weber C, et al. The histone demethylase KDM6B regulates temperature-dependent sex determination in a turtle species. Science. 2018;360(6389):645–8.
Article
CAS
PubMed
Google Scholar
Sun LX, Wang YY, Zhao Y, et al. Global DNA methylation changes in Nile Tilapia gonads during High temperature-induced masculinization. PLoS One. 2016;11(8):e0158483.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lai YS, Shen D, Zhang W, et al. Temperature and photoperiod changes affect cucumber sex expression by different epigenetic regulations. BMC Plant Biol. 2018;18(1):268.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohno S, Katsu Y, Urushitani H, et al. Potential contributions of heat shock proteins to temperature-dependent sex determination in the American alligator. Sex Dev. 2010;4(1–2):73–87.
Article
CAS
PubMed
Google Scholar
Li CG, Wang H, Chen HJ, Zhao Y, Fu PS, Ji XS. Differential expression analysis of genes involved in high-temperature induced sex differentiation in Nile tilapia. Comp Biochem Physiol B: Biochem Mol Biol. 2014;177–178:36–45.
Article
CAS
Google Scholar
Hsiao CD, Tsai HJ. Transgenic zebrafish with fluorescent germ cell: a useful tool to visualize germ cell proliferation and juvenile hermaphroditism in vivo. Dev Biol. 2003;262(2):313–23.
Article
CAS
PubMed
Google Scholar
Maack G, Segner H. Morphological development of the gonads in zebrafish. J Fish Biol. 2010;62(4):895–906.
Article
Google Scholar
Uchida D, Yamashita M, Kitano T, et al. Oocyte apoptosis during the transition from ovary-like tissue to testes during sex differentiation of juvenile zebrafish. J Exp Biol. 2002;205(Pt 6):711–8.
Article
PubMed
Google Scholar
Tzung KW, Goto R, Saju JM, et al. Early depletion of primordial germ cells in zebrafish promotes testis formation. Stem Cell Reports. 2015;4(1):61–73.
Article
CAS
PubMed
Google Scholar
Pradhan A, Khalaf H, Ochsner SA, et al. Activation of NF-κB protein prevents the transition from juvenile ovary to testis and promotes ovarian development in zebrafish. J Biol Chem. 2012;287(45):37926–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodríguez-Marí A, Cañestro C, Bremiller RA, et al. Sex reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis. PLoS Genet. 2010;6(7):e1001034.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sreenivasan R, Jiang J, Wang X, et al. Gonad differentiation in zebrafish is regulated by the canonical Wnt signaling pathway. Biol Reprod. 2014;90(2):45.
Article
PubMed
CAS
Google Scholar
Wilson CA, High SK, McCluskey BM, Amores A, Yan YL, Titus TA, et al. Wild sex in zebrafish: loss of the natural sex determinant in domesticated strains. Genetics. 2014;198(3):1291–308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amores A, Postlethwait JH. Banded chromosomes and the zebrafish karyotype. Methods Cell Biol. 1999;60:323–38.
Article
CAS
PubMed
Google Scholar
Bradley KM, Breyer JP, Melville DB, et al. An SNP-based linkage map for zebrafish reveals sex determination loci. G3 (Bethesda). 2011;1(1):3–9.
Article
CAS
Google Scholar
Liew WC, Bartfai R, Lim Z, et al. Polygenic sex determination system in zebrafish. PLoS One. 2012;7(4):e34397.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liew WC, Orban L. Zebrafish sex: a complicated affair. Brief Funct Genomics. 2014;13(2):172–87.
Article
PubMed
Google Scholar
Abozaid H, Wessels S, Horstgen-Schwark G. Elevated temperature applied during gonadal transformation leads to male bias in zebrafish (Danio rerio). Sex Dev. 2012;6(4):201–9.
Article
CAS
PubMed
Google Scholar
Abozaid H, Wessels S, Hörstgen-Schwark G. Effect of rearing temperatures during embryonic development on the phenotypic sex in zebrafish (Danio rerio). Sex Dev. 2011;5(5):259–65.
Article
CAS
PubMed
Google Scholar
Ribas L, Liew WC, Diaz N, et al. Heat-induced masculinization in domesticated zebrafish is family-specific and yields a set of different gonadal transcriptomes. Proc Natl Acad Sci U S A. 2017;114(6):E941–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mottola G, Nikinmaa M, Anttila K. Hsp70s transcription-translation relationship depends on the heat shock temperature in zebrafish. Comp Biochem Physiol A Mol Integr Physiol. 2020;240:110629.
Article
CAS
PubMed
Google Scholar
Long Y, Li L, Li Q, He X, Cui Z. Transcriptomic characterization of temperature stress responses in larval zebrafish. PLoS One. 2012;7(5):e37209.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hosseini S, Brenig B, Tetens J, et al. Phenotypic plasticity induced using high ambient temperature during embryogenesis in domesticated zebrafish Danio rerio. Reprod Domest Anim. 2019;54(3):435–44.
Article
PubMed
Google Scholar
Kantidze OL, Velichko AK, Luzhin AV, et al. Heat stress-induced DNA damage. Acta Nat. 2016;8(2):75–8.
Article
CAS
Google Scholar
Houston BJ, Nixon B, Martin JH, et al. Heat exposure induces oxidative stress and DNA damage in the male germ line. Biol Reprod. 2018;98(4):593–606.
Article
PubMed
Google Scholar
Lopes AR, Figueiredo C, Sampaio E, et al. Impaired antioxidant defenses and DNA damage in the European glass eel (Anguilla anguilla) exposed to ocean warming and acidification. Sci Total Environ. 2021;774:145499.
Article
CAS
PubMed
Google Scholar
Chien LC, Wu YH, Ho TN, et al. Heat stress modulates nucleotide excision repair capacity in zebrafish (Danio rerio) early and mid-early embryos via distinct mechanisms. Chemosphere. 2020;238:124653.
Article
CAS
PubMed
Google Scholar
Dubrez L, Causse S, Borges Bonan N, Dumétier B, Garrido C. Heat-shock proteins: chaperoning DNA repair. Oncogene. 2020;39(3):516–29.
Article
CAS
PubMed
Google Scholar
Keller JM, Escara-Wilke JF, Keller ET. Heat stress-induced heat shock protein 70 expression is dependent on ERK activation in zebrafish (Danio rerio) cells. Comp Biochem Physiol A Mol Integr Physiol. 2008;150(3):307–14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feugere L, Scott VF, Rodriguez-Barucg Q, Beltran-Alvarez P, Wollenberg Valero KC. Thermal stress induces a positive phenotypic and molecular feedback loop in zebrafish embryos. J Therm Biol. 2021;102:103114.
Article
CAS
PubMed
Google Scholar
Murtha JM, Keller ET. Characterization of the heat shock response in mature zebrafish (Danio rerio). Exp Gerontol. 2003;38(6):683–91.
Article
CAS
PubMed
Google Scholar
Ramanagoudr-Bhojappa R, Carrington B, Ramaswami M, et al. Multiplexed CRISPR/Cas9-mediated knockout of 19 Fanconi anemia pathway genes in zebrafish revealed their roles in growth, sexual development and fertility. PLoS Genet. 2018;14(12):e1007821.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tsui V, Crismani W. The Fanconi Anemia pathway and fertility. Trends Genet. 2019;35(3):199–214.
Article
CAS
PubMed
Google Scholar
Ceccaldi R, Sarangi P, D'andrea AD. The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol. 2016;17(6):337–49.
Article
CAS
PubMed
Google Scholar
Grad I, Cederroth CR, Walicki J, et al. The molecular chaperone Hsp90alpha is required for meiotic progression of spermatocytes beyond pachytene in the mouse. PLoS One. 2010;5(12):e15770.
Article
CAS
PubMed
PubMed Central
Google Scholar
Held T, Paprotta I, Khulan J, et al. Hspa4l-deficient mice display increased incidence of male infertility and hydronephrosis development. Mol Cell Biol. 2006;26(21):8099–108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogon C, Ulbricht A, Hesse M, et al. HSP70-binding protein HSPBP1 regulates chaperone expression at a posttranslational level and is essential for spermatogenesis. Mol Biol Cell. 2014;25(15):2260–71.
Article
PubMed
PubMed Central
Google Scholar
Saju JM, Hossain MS, Liew WC, et al. Heat shock factor 5 is essential for spermatogenesis in zebrafish. Cell Rep. 2018;25(12):3252–3261.e4.
Article
CAS
PubMed
Google Scholar
Obermann WMJ. A motif in HSP90 and P23 that links molecular chaperones to efficient estrogen receptor alpha methylation by the lysine methyltransferase SMYD2.J. Biol Chem. 2018;293(42):16479–87.
Article
CAS
Google Scholar
Skinner MK, Guerrero-Bosagna C, Haque M, et al. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line. PLoS One. 2013;8(7):e66318.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dorts J, Falisse E, Schoofs E, Flamion E, Kestemont P, Silvestre F. DNA methyltransferases and stress-related genes expression in zebrafish larvae after exposure to heat and copper during reprogramming of DNA methylation. Sci Rep. 2016;6:34254. Published 2016 Oct 12.
Ren W, Gao L, Song J. Structural basis of DNMT1 and DNMT3A-mediated DNA methylation. Genes (Basel). 2018;9(12).
Kibe K, Shirane K, Ohishi H, Uemura S, Toh H, Sasaki H. The DNMT3A PWWP domain is essential for the normal DNA methylation landscape in mouse somatic cells and oocytes. PLoS Genet. 2021;17(5):e1009570.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Zhang Z, Chen J, et al. Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1. Nature. 2018;564(7734):136–40.
Article
CAS
PubMed
Google Scholar
Li R, Li Y, Kristiansen K, et al. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008;24(5):713–4.
Article
CAS
PubMed
Google Scholar
Kim D, Langmead B, Salzberg S. L.HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey C N.RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics,2011, 12: 323.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abdi H. The Bonferonni and Šidák corrections for multiple comparisons. Encycloped Measurement Stat. 2007;1:1–9.
Google Scholar