Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2010;316(2):129–39. https://doi.org/10.1016/j.mce.2009.08.018.
Article
CAS
PubMed
Google Scholar
MacDougald OA, Burant CF. The rapidly expanding family of adipokines. Cell Metab. 2007;6(3):159–61. https://doi.org/10.1016/j.cmet.2007.08.010.
Article
CAS
PubMed
Google Scholar
Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006;444:847–53. https://doi.org/10.1038/nature05483.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11(1):11–8. https://doi.org/10.1111/j.1467-789X.2009.00623.x.
Article
PubMed
Google Scholar
Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 2008;7(5):410–20. https://doi.org/10.1016/j.cmet.2008.04.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robich MP, Osipov RM, Nezafat R, Feng J, Clements RT, Bianchi C, et al. Resveratrol improves myocardial perfusion in a swine model of hypercholesterolemia and chronic myocardial ischemia. Circulation. 2010;122(11_suppl_1):S142–9. https://doi.org/10.1161/CIRCULATIONAHA.109.920132.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li MZ, Wu HL, Luo ZG, Xia YD, Guan JQ, Wang T. An atlas of DNA methylomes in porcine adipose and muscle tissues. Nat Commun. 2012;3:850. https://doi.org/10.1038/ncomms1854.
Article
CAS
PubMed
Google Scholar
Kogelman LJA, Cirera S, Zhernakova DV, Fredholm M, Franke L, Kadarmideen HN. Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA sequencing in a porcine model. BMC Med Genomics. 2014;7:57. https://doi.org/10.1186/1755-8794-7-57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kogelman LJA, Zhernakova DV, Westra HJ, Cirera S, Fredholm M, Franke L, et al. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity. Genome Med. 2015;7:105. https://doi.org/10.1186/s13073-015-0229-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunshea F, D’souza D. A review: fat deposition and metabolism in the pig. Manipulating Pig Production IX. 2003;127–50.
Zhou S, Li M, Li Q, Guan J, Li X. Differential expression analysis of porcine MDH1, MDH2 and ME1 genes in adipose tissues. Genet Mol Res. 2012;11(2):1254–9. https://doi.org/10.4238/2012.May.9.4.
Article
CAS
PubMed
Google Scholar
Mentzel CMJ, Anthon C, Jacobsen MJ, Karlskov-Mortensen P, Bruun CS, Jørgensen CB, et al. Gender and obesity specific microRNA expression in adipose tissue from lean and obese pigs. PLoS One. 2015;10(7):e0131650. https://doi.org/10.1371/journal.pone.0131650.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4(1):17. https://doi.org/10.2202/1544-6115.1128.
Article
Google Scholar
Chou W, Cheng A, Brotto M, Chuang C. Visual gene-network analysis reveals the cancer gene co-expression in human endometrial cancer. BMC Genomics. 2014;15:300. https://doi.org/10.1186/1471-2164-15-300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin L, Cai Z, Zhu B, Xu C. Identification of key pathways and genes in the dynamic progression of HCC based on WGCNA. Genes. 2018;9(2):92. https://doi.org/10.3390/genes9020092.
Article
CAS
PubMed Central
Google Scholar
Wan Q, Tang J, Han Y, Wang D. Co-expression modules construction by WGCNA and identify potential prognostic markers of uveal melanoma. Exp Eye Res. 2018;166:13–20. https://doi.org/10.1016/j.exer.2017.10.007.
Article
CAS
PubMed
Google Scholar
Liao FJ, Zheng PF, Guan YZ, Pan HW, Li W. Weighted gene co-expression network analysis to identify key modules and hub genes related to hyperlipidaemia. Nutr Metab. 2021;18(1):24. https://doi.org/10.1186/s12986-021-00555-2.
Article
CAS
Google Scholar
Han Y, Wang W, Jia J, Sun X, Kuang D, Tong P, et al. WGCNA analysis of the subcutaneous fat transcriptome in a novel tree shrew model. Exp Biol Med. 2020;245(11):945–55. https://doi.org/10.1177/1535370220915180.
Article
CAS
Google Scholar
Kogelman LJ, Byrne K, Vuocolo T, Watson-Haigh NS, Kadarmideen HN, Kijas JW, et al. Genetic architecture of gene expression in ovine skeletal muscle. BMC Genom. 2011;12(1):607. https://doi.org/10.1186/1471-2164-12-607.
Article
CAS
Google Scholar
Bao Q, Zhang X, Bao P, Liang C, Guo X, Chu M, et al. Using weighted gene co-expression network analysis (WGCNA) to identify the hub genes related to hypoxic adaptation in yak (Bos grunniens). Genes Genomics. 2021;43:1231–46. https://doi.org/10.1007/s13258-021-01137-5.
Article
CAS
PubMed
Google Scholar
Wang L, Liu H, Hu B, Hu J, Li L. Transcriptome reveals genes involving in black skin color formation of ducks. Genes Genomics. 2021;43(2):173. https://doi.org/10.1007/s13258-020-01026-3.
Article
CAS
PubMed
Google Scholar
Lim D, Lee S, Kim N, Cho Y, Chai H, Seong H, et al. Gene co-expression analysis to characterize genes related to marbling trait in Hanwoo (Korean) cattle. Asian Australas J Anim Sci. 2013;26(1):19–29. https://doi.org/10.5713/ajas.2012.12375.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xing K, Liu H, Zhang F, Liu Y, Shi Y, Ding X, et al. Identification of key genes affecting porcine fat deposition based on co-expression network analysis of weighted genes. J Anim Sci Biotechnol. 2021;12:100. https://doi.org/10.1186/s40104-021-00616-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vella D, Marini S, Vitali F, Di Silvestre D, Mauri G, Bellazzi R. MTGO: PPI network analysis via topological and functional module identification. Sci Rep. 2018;8:5499. https://doi.org/10.1038/s41598-018-23672-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao X, Hu H, Lin H, Wang C, Wang Y, Wang J. Muscle transcriptome analysis reveals potential candidate genes and pathways affecting intramuscular fat content in pigs. Front Genet. 2020;11:877. https://doi.org/10.3389/fgene.2020.00877.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitin N, Rossman KL, Der CJ. Signaling interplay in Ras superfamily function. Curr Biol. 2005;15:R563–74. https://doi.org/10.1016/j.cub.2005.07.010.
Article
CAS
PubMed
Google Scholar
Ory S, Morrison DK. Signal transduction: implications for Ras-dependent ERK signaling. Curr Biol. 2004;14:R277–8. https://doi.org/10.1016/j.cub.2004.03.023.
Article
CAS
PubMed
Google Scholar
Zhang W, Liu H. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12:9–18. https://doi.org/10.1038/sj.cr.7290105.
Article
CAS
PubMed
Google Scholar
Benito M, Valverde AM, Lorenzo M. IGF-I: a mitogen also involved in differentiation processes in mammalian cells. Int J Biochem Cell Biol. 1996;28(5):499–510. https://doi.org/10.1016/1357-2725(95)00168-9.
Article
CAS
PubMed
Google Scholar
Xie L, Jiang Y, Yang P, Chen J, Doan H, Herndon B. Effects of dietary calorie restriction or exercise on the PI3K and Ras signaling pathways in the skin of mice. J Biol Chem. 2007;282(38):28025–35. https://doi.org/10.1074/jbc.M604857200.
Article
CAS
PubMed
Google Scholar
Werner H, Le Roith D. New concepts in regulation and function of the insulin-like growth factors: implications for understanding normal growth and neoplasia. Cell Mol Life Sci. 2000;57:932–42. https://doi.org/10.1007/PL0000073.
Article
CAS
PubMed
Google Scholar
Poklukar K, Čandek-Potokar M, Vrecl M, Batorek-Lukač N, Fazarinc G, Kress K, et al. Adipose tissue gene expression of entire male, immunocastrated and surgically castrated pigs. Int J Mol Sci. 2021;22(4):1768. https://doi.org/10.3390/ijms22041768.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schlessinger J. Common and distinct elements in cellular signaling via EGF and FGF receptors. Science. 2004;306(5701):1506–7. https://doi.org/10.1126/science.1105396.
Article
CAS
PubMed
Google Scholar
Cooper JF, Guasp RJ, Arnold ML, Grant BD, Driscoll M. Stress increases in exopher-mediated neuronal extrusion require lipid biosynthesis, FGF, and EGF RAS/MAPK signaling. PNAS. 2021;118(36):e2101410118. https://doi.org/10.1073/pnas.2101410118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandes-Freitas I, Owen BM. Metabolic roles of endocrine fibroblast growth factors. Curr Opin Pharmacol. 2015;25:30–5. https://doi.org/10.1016/j.coph.2015.09.014.
Article
CAS
PubMed
Google Scholar
Itoh N, Ornitz DM. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem. 2010;149(2):121–30. https://doi.org/10.1093/jb/mvq121.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer C, Seki T, Lim S, Nakamura M, Andersson P, Yang Y. A miR-327-FGF10-FGFR2-mediated autocrine signaling mechanism controls white fat browning. Nat Commun. 2017;8(1):2079. https://doi.org/10.1038/s41467-017-02158-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohta H, Konishi M, Itoh N. FGF10 and FGF21 as regulators in adipocyte development and metabolism. Endocr Metab Immune Disord Drug Targets. 2011;11(4):302–9. https://doi.org/10.2174/187153011797881166.
Article
CAS
PubMed
Google Scholar
Ruiz-Ojeda FJ, Méndez A, Aguilera CM, Plaza-Díaz J. Extracellular matrix remodeling of adipose tissue in obesity and metabolic diseases. Int J Mol Sci. 2019;20(19):4888. https://doi.org/10.3390/ijms20194888.
Article
CAS
PubMed Central
Google Scholar
Zhang W, Ge Y, Cheng Q, Zhang Q, Fang L, Zheng J. Decorin is a pivotal effector in the extracellular matrix and tumour microenvironment. Oncotarget. 2018;9(4):5480–91. https://doi.org/10.18632/oncotarget.23869.
Article
PubMed
PubMed Central
Google Scholar
Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801. https://doi.org/10.1038/nrm3904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fumiko N, Masataka N, Takahiro H, Hitoo N, Yasuhiro N, Osamu B, et al. Loss of periostin ameliorates adipose tissue inflammation and fibrosis in vivo. Sci Rep. 2018;8(1):8553. https://doi.org/10.1038/s41598-018-27009-9.
Article
CAS
Google Scholar
Schwanekamp JA, Lorts A, Vagnozzi RJ, Vanhoutte D, Molkentin JD. Deletion of periostin protects against atherosclerosis in mice by altering inflammation and extracellular matrix remodeling. Arterioscler Thromb Vasc Biol. 2016;36(1):60–8. https://doi.org/10.1161/ATVBAHA.115.306397.
Article
CAS
PubMed
Google Scholar
Font B, Eichenberger D, Rosenberg LM, Rest MVD. Characterization of the interactions of type XII collagen with two small proteoglycans from fetal bovine tendon, decorin and fibromodulin. Matrix Biol. 1996;15(5):341–8. https://doi.org/10.1016/S0945-053X(96)90137-7.
Article
CAS
PubMed
Google Scholar
Liang X, Chai B, Duan R, Zhou Y, Huang X, Li Q. Inhibition of FKBP10 attenuates hypertrophic scarring through suppressing fibroblast activity and extracellular matrix deposition. J Investig Dermatol. 2017;137(11):2326–35. https://doi.org/10.1016/j.jid.2017.06.029.
Article
CAS
PubMed
Google Scholar
Vadon-Le Goff S, Kronenberg D, Bourhis JM, Bijakowski C, Raynal N, Ruggiero F, et al. Procollagen C-proteinase enhancer stimulates procollagen processing by binding to the C-propeptide region only. J Biol Chem. 2011;286:38932–8. https://doi.org/10.1074/jbc.M111.274944.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pulido D, Sharma U, Vadon-Le Goff S, Hussain SA, Cordes S, Mariano N, et al. Structural basis for the acceleration of procollagen processing by procollagen C-proteinase enhancer-1. Structure. 2018;26(1384–92):e3. https://doi.org/10.1016/j.str.2018.06.011.
Article
CAS
Google Scholar
Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol. 2016;7:30. https://doi.org/10.3389/fendo.2016.00030.
Article
Google Scholar
Chun TH, Hotary KB, Sabeh F, Saltiel AR, Allen ED, Weiss SJ. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell. 2006;125:577–91. https://doi.org/10.1016/j.cell.2006.02.050.
Article
CAS
PubMed
Google Scholar
Khan T, Muise ES, Iyengar P, Wang ZV, Chandalia M, Abate N, et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol. 2009;29:1575–91. https://doi.org/10.1128/MCB.01300-08.
Article
CAS
PubMed
Google Scholar
Pasarica M, Gowronska-Kozak B, Burk D, Remedios I, Hymel D, Gimble J, et al. Adipose tissue collagen VI in obesity. J Clin Endocrinol Metab. 2009;94:5155–62. https://doi.org/10.1210/jc.2009-0947.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schindeler A, Little DG. Ras-MAPK signaling in osteogenic differentiation: friend or foe? J Bone Miner Res. 2006;21(9):1331–8. https://doi.org/10.1359/jbmr.060603.
Article
PubMed
Google Scholar
Jeong JY, Ibrahim M, Kim MJ, So K, Jeong YD, Park S, et al. Comparisons of extracellular matrix-related gene expression levels in different adipose tissues from Korean cattle. Livest Sci. 2017;198:138–46. https://doi.org/10.1016/j.livsci.2017.02.020.
Article
Google Scholar
Barber GN. STING-dependent cytosolic DNA sensing pathways. Trends Immunol. 2014;35(2):88–93. https://doi.org/10.1016/j.it.2013.10.010.
Article
CAS
PubMed
Google Scholar
Wang J, Knau H. Chemokine signaling in development and disease. Development. 2014;141(22):4199–205. https://doi.org/10.1242/dev.101071.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye M, Bao H, Meng Y, Guan L, Stothard P, Plastow G. Comparative transcriptomic analysis of porcine peripheral blood reveals differentially expressed genes from the cytokine-cytokine receptor interaction pathway related to health status. Genome. 2017;60(12):1–36. https://doi.org/10.1139/gen-2017-0074.
Article
CAS
Google Scholar
Kawasaki T, Kawai T. Toll-like receptor signaling pathway. Front Immunol. 2014;5:461. https://doi.org/10.3389/fimmu.2014.00461.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carvalho FA, Aitken JD, Vijay-Kumar M, Gewirtz AT. Toll-like receptor-gut microbiota interactions: perturb at your own risk! Annu Rev Physiol. 2012;74(1):177–98. https://doi.org/10.1146/annurev-physiol-020911-153330.
Article
CAS
PubMed
Google Scholar
Rogero MM, Calder PC. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients. 2018;10:432. https://doi.org/10.3390/nu10040432.
Article
CAS
PubMed Central
Google Scholar
Takeuchi O, Akira S. Innate immunity to virus infection. Immunol Rev. 2010;227(1):75–86. https://doi.org/10.1111/j.1600-065X.2008.00737.x.
Article
Google Scholar
Schoggins JW, Rice CM. Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol. 2011;1(6):519–25. https://doi.org/10.1016/j.coviro.2011.10.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiang JJ, Davis ME, Gack MU. Regulation of RIG-I-like receptor signaling by host and viral proteins. Cytokine Growth Factor Rev. 2014;25(5):491–505. https://doi.org/10.1016/j.cytogfr.2014.06.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eisenächer K, Krug A. Regulation of RLR-mediated innate immune signaling-it is all about keeping the balance. Eur J Cell Biol. 2012;91(1):36–47. https://doi.org/10.1016/j.ejcb.2011.01.011.
Article
CAS
PubMed
Google Scholar
Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, et al. Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov. 2007;6(12):975–90. https://doi.org/10.1038/nrd2422.
Article
CAS
PubMed
PubMed Central
Google Scholar
González-Navajas JM, Lee J, David M, Raz E. Immunomodulatory functions of type I interferons. Nat Rev Immunol. 2012;12(2):125–35. https://doi.org/10.1038/nri3133.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen K, Liu J, Cao X. Regulation of type I interferon signaling in immunity and inflammation: a comprehensive review. J Autoimmun. 2017;83:1–11. https://doi.org/10.1016/j.jaut.2017.03.008.
Article
CAS
PubMed
Google Scholar
Hyrcza MD, Kovacs C, Loutfy M, Halpenny R, Heisler L, Yang S, et al. Distinct transcriptional profiles in Ex vivo CD4+ and CD8+ T cells are established early in human immunodeficiency virus type 1 infection and are characterized by a chronic interferon response as well as extensive transcriptional changes in CD8+ T cells. J Virol. 2007;81(7):3477–86. https://doi.org/10.1128/JVI.01552-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brownell J, Bruckner J, Wagoner J, Thomas E, Loo YM, Gale JM, et al. Direct, interferon-independent activation of the CXCL10 promoter by NF-κB and interferon regulatory factor 3 during hepatitis C virus infection. J Virol. 2014;88(3):1582–90. https://doi.org/10.1128/JVI.02007-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marshall A, Celentano A, Cirillo N, Mccullough M, Porter S. Tissue-specific regulation of CXCL9/10/11 chemokines in keratinocytes: Implications for oral inflammatory disease. PLoS One. 2017;12(3):e0172821. https://doi.org/10.1371/journal.pone.0172821.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheon H, Borden EC, Stark GR. Interferons and their stimulated genes in the tumor microenvironment. Semin Oncol. 2014;41(2):156–73. https://doi.org/10.1053/j.seminoncol.2014.02.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johansen T, Hansen HS, Richelsen B, Malmlöf K. The obese Gottingen minipig as a model of the metabolic syndrome: dietary effects on obesity, insulin sensitivity, and growth hormone profile. Comp Med. 2001;51(2):150–5.
CAS
PubMed
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. https://doi.org/10.1093/nar/gkv007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol. 2011;696:291–303. https://doi.org/10.1007/978-1-60761-987-1_18.
Article
CAS
PubMed
Google Scholar
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999;27(1):29–34. https://doi.org/10.1093/nar/27.1.29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu G, Wang L, Han Y, He Q. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chin CH, Chen SH, Wu HH, Ho CW, Ko M, Lin CY. CytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):S11. https://doi.org/10.1186/1752-0509-8-S4-S11.
Article
PubMed
PubMed Central
Google Scholar