White JD, Scaffidi A, Davies M, McGeachie J, Rudnicki MA, Grounds MD. Myotube formation is delayed but not prevented in MyoD-deficient skeletal muscle: studies in regenerating whole muscle grafts of adult mice. J Histochem Cytochem. 2000;48(11):1531–44.
Article
CAS
Google Scholar
Andersson L, Georges M. Domestic-animal genomics: deciphering the genetics of complex traits. Nat Rev Genet. 2004;5(3):202–12.
Article
CAS
Google Scholar
Hettmer S, Wagers AJ. Muscling in: uncovering the origins of rhabdomyosarcoma. Nat Med. 2010;16(2):171–3.
Article
CAS
Google Scholar
Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, Adam MA, Lassar AB, Miller AD. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci U S A. 1989;86(14):5434–8.
Article
CAS
Google Scholar
Singh K, Dilworth FJ. Differential modulation of cell cycle progression distinguishes members of the myogenic regulatory factor family of transcription factors. FEBS J. 2013;280(17):3991–4003.
Article
CAS
Google Scholar
Schuster-Gossler K, Cordes R, Gossler A. Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants. Proc Natl Acad Sci U S A. 2007;104(2):537–42.
Article
CAS
Google Scholar
Zhao X, Mo D, Li A, Gong W, Xiao S, Zhang Y, Qin L, Niu Y, Guo Y, Liu X, et al. Comparative analyses by sequencing of transcriptomes during skeletal muscle development between pig breeds differing in muscle growth rate and fatness. PLoS One. 2011;6(5):e19774.
Article
CAS
Google Scholar
Chen JC, Goldhamer DJ. The core enhancer is essential for proper timing of MyoD activation in limb buds and branchial arches. Dev Biol. 2004;265(2):502–12.
Article
CAS
Google Scholar
Scionti I, Hayashi S, Mouradian S, Girard E, Esteves de Lima J, Morel V, Simonet T, Wurmser M, Maire P, Ancelin K, et al. LSD1 controls timely MyoD expression via MyoD Core enhancer transcription. Cell Rep. 2017;18(8):1996–2006.
Article
CAS
Google Scholar
Mueller AC, Cichewicz MA, Dey BK, Layer R, Reon BJ, Gagan JR, Dutta A. MUNC, a long noncoding RNA that facilitates the function of MyoD in skeletal myogenesis. Mol Cell Biol. 2015;35(3):498–513.
Article
Google Scholar
Garstang MG, Madapura PM. An enhancer-derived RNA muscles in to regulate Myogenin in trans. Mol Cell. 2018;71(1):3–5.
Article
CAS
Google Scholar
Tsai PF, Dell'Orso S, Rodriguez J, Vivanco KO, Ko KD, Jiang K, Juan AH, Sarshad AA, Vian L, Tran M, et al. A Muscle-Specific Enhancer RNA Mediates Cohesin Recruitment and Regulates Transcription In trans. Mol Cell. 2018;71(1):129–141.e128.
Article
CAS
Google Scholar
Chen JC, Love CM, Goldhamer DJ. Two upstream enhancers collaborate to regulate the spatial patterning and timing of MyoD transcription during mouse development. Dev Dyn. 2001;221(3):274–88.
Article
CAS
Google Scholar
Goldhamer DJ, Brunk BP, Faerman A, King A, Shani M, Emerson CP Jr. Embryonic activation of the myoD gene is regulated by a highly conserved distal control element. Development. 1995;121(3):637–49.
CAS
PubMed
Google Scholar
Tapscott SJ, Lassar AB, Weintraub H. A novel myoblast enhancer element mediates MyoD transcription. Mol Cell Biol. 1992;12(11):4994–5003.
Article
CAS
Google Scholar
Asakura A, Lyons GE, Tapscott SJ. The regulation of MyoD gene expression: conserved elements mediate expression in embryonic axial muscle. Dev Biol. 1995;171(2):386–98.
Article
CAS
Google Scholar
Huang Y, Chen B, Ye M, Liang P, Zhangfang Y, Huang J, Liu M, Songyang Z, Ma W. Ccndbp1 is a new positive regulator of skeletal myogenesis. J Cell Sci. 2016;129(14):2767–77.
Article
CAS
Google Scholar
Li JQ, Chen ZM, Liu DW, Liu XH, Sun BL, Ling F, Zhang H, Chen YS. Genetic effects of IGF-1 gene on the performance in landrace x Lantang pig resource population. Yi chuan xue bao =. Acta Genet Sin. 2003;30(9):835–9.
CAS
PubMed
Google Scholar
Newcom DW, Stalder KJ, Baas TJ, Goodwin RN, Parrish FC, Wiegand BR. Breed differences and genetic parameters of myoglobin concentration in porcine longissimus muscle. J Anim Sci. 2004;82(8):2264–8.
Article
CAS
Google Scholar
Tang Z, Li Y, Wan P, Li X, Zhao S, Liu B, Fan B, Zhu M, Yu M, Li K. LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and landrace pigs. Genome Biol. 2007;8(6):R115.
Article
Google Scholar
Suzuki A, Kojima N, Ikeuchi Y, Ikarashi S, Moriyama N, Ishizuka T, Tokushige H. Carcass composition and meat quality of Chinese purebred and European x Chinese crossbred pigs. Meat Sci. 1991;29(1):31–41.
Article
CAS
Google Scholar
Freilich M, Wen B, Shafer D, Schleier P, Dard M, Pendrys D, Ortiz D, Kuhn L. Implant-guided vertical bone growth in the mini-pig. Clin Oral Implants Res. 2012;23(6):751–7.
Article
Google Scholar
Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell. 1993;75(7):1351–9.
Article
CAS
Google Scholar
Law C, Cheung P. Expression of non-acetylatable H2A.Z in myoblast cells blocks myoblast differentiation through disruption of MyoD expression. J Biol Chem. 2015;290(21):13234–49.
Article
CAS
Google Scholar
Wang C, Liu W, Nie Y, Qaher M, Horton HE, Yue F, Asakura A, Kuang S. Loss of MyoD promotes fate Transdifferentiation of myoblasts into Brown adipocytes. EBioMedicine. 2017;16:212–23.
Article
Google Scholar
Tapscott SJ. The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development. 2005;132(12):2685–95.
Article
CAS
Google Scholar
Tapscott SJ, Davis RL, Thayer MJ, Cheng PF, Weintraub H, Lassar AB. MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science (New York, NY). 1988;242(4877):405–11.
Article
CAS
Google Scholar
Fong AP, Yao Z, Zhong JW, Johnson NM, Farr GH 3rd, Maves L, Tapscott SJ. Conversion of MyoD to a neurogenic factor: binding site specificity determines lineage. Cell Rep. 2015;10(12):1937–46.
Article
CAS
Google Scholar
Di Gioia SA, Shaaban S, Tuysuz B, Elcioglu NH, Chan WM, Robson CD, Ecklund K, Gilette NM, Hamzaoglu A, Tayfun GA, et al. Recessive MYF5 mutations cause external Ophthalmoplegia, rib, and vertebral anomalies. Am J Hum Genet. 2018;103(1):115–24.
Article
Google Scholar
Harada A, Maehara K, Sato Y, Konno D, Tachibana T, Kimura H, Ohkawa Y. Incorporation of histone H3.1 suppresses the lineage potential of skeletal muscle. Nucleic Acids Res. 2015;43(2):775–86.
Article
CAS
Google Scholar
Luo D, de Morree A. Deltex2 represses MyoD expression and inhibits myogenic differentiation by acting as a negative regulator of Jmjd1c. Proc Natl Acad Sci. 2017;114(15):E3071–e3080.
Article
CAS
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England). 2009;25(14):1754–60.
Article
CAS
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
Article
CAS
Google Scholar