Koning-Boucoiran CF, Esselink GD, Vukosavljev M, van't Westende WP, Gitonga VW, Krens FA, Voorrips RE, van de Weg WE, Schulz D, Debener T. Using RNA-Seq to assemble a rose transcriptome with more than 13,000 full-length expressed genes and to develop the WagRhSNP 68k Axiom SNP array for rose (Rosa L.). Front Plant Sci. 2015;6:249.
Liorzou M, Pernet A, Li S, Chastellier A, Thouroude T, Michel G, Malécot V, Gaillard S, Briée C, Foucher F. Nineteenth century French rose (Rosa sp.) germplasm shows a shift over time from a European to an Asian genetic background. J Exp Bot. 2016;67(15):4711–25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13(4):414–30.
Article
PubMed
PubMed Central
Google Scholar
Jones JD, Dangl JL. The plant immune system. Nature. 2006;444(7117):323–9.
Article
PubMed
CAS
Google Scholar
Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci. 2010;107(20):9452–7.
Article
PubMed
PubMed Central
Google Scholar
Zhang Z, Song Y, Liu C-M, Thomma BP. Mutational analysis of the Ve1 immune receptor that mediates Verticillium resistance in tomato. PLoS One. 2014;9(6):e99511.
Article
PubMed
PubMed Central
CAS
Google Scholar
Audenaert K, De Meyer GB, Höfte MM. Abscisic acid determines basal susceptibility of tomato toBotrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol. 2002;128(2):491–501.
Article
PubMed
PubMed Central
CAS
Google Scholar
Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol. 2005;43:205–27.
Article
PubMed
CAS
Google Scholar
Belkhadir Y, Jaillais Y, Epple P, Balsemão-Pires E, Dangl JL, Chory J. Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proc Natl Acad Sci. 2012;109(1):297–302.
Article
PubMed
Google Scholar
Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC. Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol. 2012;28:489–521.
Article
PubMed
CAS
Google Scholar
Vos I, Pieterse C, Wees S. Costs and benefits of hormone-regulated plant defences. Plant Pathol. 2013;62(S1):43–55.
Article
Google Scholar
Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 2002;29(1):23–32.
Article
PubMed
CAS
Google Scholar
Zheng Z, Qamar SA, Chen Z, Mengiste T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J. 2006;48(4):592–605.
Article
PubMed
CAS
Google Scholar
Mengiste T, Chen X, Salmeron J, Dietrich R. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell. 2003;15(11):2551–65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ou B, Yin K-Q, Liu S-N, Yang Y, Gu T, Hui JMW, Zhang L, Miao J, Kondou Y, Matsui M. A high-throughput screening system for Arabidopsis transcription factors and its application to Med25-dependent transcriptional regulation. Mol Plant. 2011;4(3):546–55.
Article
PubMed
CAS
Google Scholar
Le Hénanff G, Profizi C, Courteaux B, Rabenoelina F, Gérard C, Clément C, Baillieul F, Cordelier S, Dhondt-Cordelier S. Grapevine NAC1 transcription factor as a convergent node in developmental processes, abiotic stresses, and necrotrophic/biotrophic pathogen tolerance. J Exp Bot. 2013;64(16):4877–93.
Article
PubMed
CAS
Google Scholar
Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell. 2004;16(7):1938–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Du M, Zhao J, Tzeng DT, Liu Y, Deng L, Yang T, Zhai Q, Wu F, Huang Z, Zhou M. MYC2 Orchestrates a Hierarchical Transcriptional Cascade that Regulates Jasmonate-Mediated Plant Immunity in Tomato. The Plant Cell Online. 2017; tpc. 00953.02016
Zhang Z, Thomma BP. Virus-induced gene silencing and agrobacterium tumefaciens-mediated transient expression in Nicotiana tabacum. Plant-Pathog Interact: Methods Protoc. 2014:173–81.
Fradin EF, Zhang Z, Rovenich H, Song Y, Liebrand TW, Masini L, van den Berg GC, Joosten MH, Thomma BP. Functional analysis of the tomato immune receptor Ve1 through domain swaps with its non-functional homolog Ve2. PLoS One. 2014;9(2):e88208.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li J, Wen JQ, Lease KA, Doke JT, Tax FE, Walker JC. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell. 2002;110(2):213–22.
Article
PubMed
CAS
Google Scholar
Nam KH, Li JM. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell. 2002;110(2):203–12.
Article
PubMed
CAS
Google Scholar
Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell. 2006;18(2):465–76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schwessinger B, Ronald PC. Plant innate immunity: perception of conserved microbial signatures. Annu Rev Plant Biol. 2012;63:451–82.
Article
PubMed
CAS
Google Scholar
Takai R, Isogai A, Takayama S, Che F-S. Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol Plant-Microbe Interact. 2008;21(12):1635–42.
Article
PubMed
CAS
Google Scholar
Singh P, Kuo Y-C, Mishra S, Tsai C-H, Chien C-C, Chen C-W, Desclos-Theveniau M, Chu P-W, Schulze B, Chinchilla D. The lectin receptor kinase-VI. 2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell. 2012;24(3):1256–70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shiu S-H, Karlowski WM, Pan R, Tzeng Y-H, Mayer KF, Li W-H. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell. 2004;16(5):1220–34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rayapuram C, Jensen MK, Maiser F, Shanir JV, Hornshøj H, Rung JH, Gregersen PL, Schweizer P, Collinge DB, Lyngkjær MF. Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley. Mol Plant Pathol. 2012;13(2):135–47.
Article
PubMed
CAS
Google Scholar
Wan J, Zhang X-C, Neece D, Ramonell KM, Clough S, Sy K, Stacey MG, Stacey G. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell. 2008;20(2):471–81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci. 2007;104(49):19613–8.
Article
PubMed
PubMed Central
Google Scholar
Wirthmueller L, Maqbool A, Banfield MJ. On the front line: structural insights into plant-pathogen interactions. Nat Rev Microbiol. 2013;11(11):761–76.
Article
PubMed
CAS
Google Scholar
Kohorn BD. The state of cell wall pectin monitored by wall associated kinases: a model. Plant Signal Behav. 2015;10(7):e1035854.
PubMed
PubMed Central
Google Scholar
Belkhadir Y, Jaillais Y, Epple P, Balsemao-Pires E, Dangl JL, Chory J. Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. P Natl Acad Sci USA. 2012;109(1):297–302.
Article
Google Scholar
Moffat CS, Ingle RA, Wathugala DL, Saunders NJ, Knight H, Knight MR. ERF5 and ERF6 play redundant roles as positive regulators of JA/et-mediated defense against Botrytis cinerea in Arabidopsis. PLoS One. 2012;7(4):e35995.
Article
PubMed
PubMed Central
CAS
Google Scholar
Son GH, Wan J, Kim HJ, Nguyen XC, Chung WS, Hong JC, Stacey G. Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response. Mol Plant-Microbe Interact. 2012;25(1):48–60.
Article
PubMed
CAS
Google Scholar
Meng X, Xu J, He Y, Yang K-Y, Mordorski B, Liu Y, Zhang S. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell. 2013;25(3):1126–42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wehner N, Hartmann L, Ehlert A, Böttner S, Oñate-Sánchez L, Dröge-Laser W. High-throughput protoplast transactivation (PTA) system for the analysis of Arabidopsis transcription factor function. Plant J. 2011;68(3):560–9.
Article
PubMed
CAS
Google Scholar
Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 2007;51(4):617–30.
Article
PubMed
CAS
Google Scholar
AbuQamar S, Luo H, Laluk K, Mickelbart MV, Mengiste T. Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J. 2009;58(2):347–60.
Article
PubMed
CAS
Google Scholar
Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. The Plant Cell Online. 2003;15(1):165–78.
Article
CAS
Google Scholar
Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell. 2004;16(12):3460–79.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pré M, Atallah M, Champion A, De Vos M, Pieterse CM, Memelink J. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol. 2008;147(3):1347–57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kazan K, Manners JM. Linking development to defense: auxin in plant–pathogen interactions. Trends Plant Sci. 2009;14(7):373–82.
Article
PubMed
CAS
Google Scholar
Quidde T, Osbourn A, Tudzynski P. Detoxification of α-tomatine byBotrytis cinerea. Physiol Mol Plant Pathol. 1998;52(3):151–65.
Article
CAS
Google Scholar
Wan C-Y, Wilkins TA. A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem. 1994;223(1):7–12.
Article
PubMed
CAS
Google Scholar
Zhong S, Joung J-G, Zheng Y, Y-r C, Liu B, Shao Y, Xiang JZ, Fei Z, Giovannoni JJ. High-throughput illumina strand-specific RNA sequencing library preparation. Cold Spring Harbor Protocols. 2011;(8) pdb. prot5652
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zheng Y, Zhao L, Gao J, Fei Z. iAssembler: a package for de novo assembly of Roche-454/sanger transcriptome sequences. BMC bioinformatics. 2011;12(1):453.
Article
PubMed
PubMed Central
Google Scholar
Ma C, Wang H, Macnish AJ, Estrada-Melo AC, Lin J, Chang Y, Reid MS, Jiang C-Z. Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia. Horticulture Research. 2015;2:15034.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pei H, Ma N, Tian J, Luo J, Chen J, Li J, Zheng Y, Chen X, Fei Z, Gao J. An NAC transcription factor controls ethylene-regulated cell expansion in flower petals. Plant Physiol. 2013;163(2):775–91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu L, Ma N, Jia Y, Zhang Y, Feng M, Jiang C-Z, Ma C, Gao J. An ethylene-induced regulatory module delays flower senescence by regulating cytokinin content. Plant Physiol. 2016:01064.02016.
Fu Y, Esselink GD, Visser RG, van Tuyl JM, Arens P. Transcriptome analysis of Gerbera hybrida including in silico confirmation of defense genes found. Front Plant Sci. 2016;7:247.
PubMed
PubMed Central
Google Scholar