Fitter AH, Fitter RS. Rapid changes in flowering time in British plants. Science. 2002;296:1689–91.
Article
PubMed
CAS
Google Scholar
Amano T, Smithers RJ, Sparks TH, Sutherland WJ. A 250-year index of first flowering dates and its response to temperature changes. P Royal Society B-Biological Sciences. 2010;277(1693):2451–7.
Article
Google Scholar
Jones HG, Brennan RM. Potential impacts of climate change on soft fruit production: the example of winter chill in Ribes. Workshop on berry production in changing climate conditions and cultivation systems. Cost-action 863: Euroberry research: from genomics to sustainable production, quality and health. E. Kruger, C. Carlen and B. Mezzetti. 2009;838:27–32.
Google Scholar
Graham J, Smith K, McCallum S, Hedley PE, Cullen DW, Dolan A, Milne L, McNicol JW, Hackett CA. Towards an understanding of the control of 'crumbly' fruit in red raspberry. SpringerPlus. 2015;4:223.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cao YS, Xiao Y, Huang HQ, Xu JC, Hu WH, Wang N. Simulated warming shifts the flowering phenology and sexual reproduction of Cardamine hirsuta under different planting densities. Sci Rep. 2016;6
Rafferty NE. Later flowering is associated with a compressed flowering season and reduced reproductive output in an early season floral resource. Oikos. 2016;125(6):821–8.
Article
Google Scholar
Graham J, Hackett C, Smith K, Woodhead M, Hein I, McCallum S. Mapping QTL for developmental traits in raspberry from bud break to ripe fruit. Theor Appl Genet. 2009;118:1143–55.
Article
PubMed
CAS
Google Scholar
Graham J, Jennings SN. Raspberry breeding. In: Jain, S.M. & Priyadarshan, M. (eds.). Breeding Plantation Tree Crops: Temperate Species. IBH & Science Publication Inc, Oxford, UK, 2009; Chapter 7:233–48.
Gotame T, Andersen L, Petersen KK, Pedersen HL, Ottosen CO, Graham J. Chlorophyll fluorescence and flowering behaviour of annual-fruiting raspberry cultivars under elevated temperature regimes. E J Hort Sci. 2013;78:193–202.
Google Scholar
Gotame TP, Cullen DW, Graham J, Hedley PE, Smith K, Morris J, Andersen L, Petersen KK. Effect of short term high temperature exposure on gene expression in raspberry cultivars. J Hort Sci & Biotech. 2014;89:532–41.
Article
Google Scholar
Graham J, Squire GR, Marshall B, Harrison RE. Spatially dependent genetic diversity within and between colonies of wild raspberry Rubus idaeus detected using RAPD markers. Mol Ecol. 1997;6(11):1001–8.
Article
Google Scholar
Marshall B, Harrison RE, Graham J, McNicol JW, Wright G, Squire GR. Spatial trends of phenotypic diversity between colonies of wild raspberry Rubus idaeus. New Phytol. 2001;151(3):671–82.
Article
Google Scholar
Graham J, Marshall B, Squire GR. Genetic differentiation over a spatial environmental gradient in wild Rubus ideaus populations. New Phytol. 2003;157(3):667–75.
Article
Google Scholar
Graham J, Woodhead M, Smith K, Russell JR, Marshall B, Ramsay G, Squire GR. New insight into wild red raspberry populations using simple sequence repeat markers. J Am Soc Hortic Sci. 2009;134:109–19.
Google Scholar
Graham J, Smith K, MacKenzie K, Jorgenson L, Hackett C, Powell W. The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theor Appl Genet. 2004;109:740–9.
Article
PubMed
CAS
Google Scholar
Sargent DJ, Fernandez-Fernandez F, Rys A, Knight VH, Simpson DW, Tobutt KR. Mapping of A(1) conferring resistance to the aphid Amphorophora idaei and dw (dwarfing habit) in red raspberry (Rubus idaeus L.) using AFLP and microsatellite markers. BMC Plant Biol. 2007:7.
Ward JA, Bhangoo J, Fernandez-Fernandez F, Moore P, Swanson JD, Viola R, Velasco R, Bassil N, Weber CA, Sargent DJ. Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics. 2013;14
Bushakra JM, Bryant DW, Dossett M, Vining KJ, VanBuren R, Gilmore BS, Lee J, Mockler TC, Finn CE, Bassil NV. A genetic linkage map of black raspberry (Rubus occidentalis) and the mapping of ag (4) conferring resistance to the aphid Amphorophora agathonica. Theor Appl Genet. 2015;128(8):1631–46.
Article
PubMed
PubMed Central
Google Scholar
Bushakra JM, Stephens MJ, Atmadjaja AN, Lewers KS, Symonds VV, Udall JA, Chagne D, Buck EJ, Gardiner SE. Construction of black (Rubus occidentalis) and red (R. Idaeus) raspberry linkage maps and their comparison to the genomes of strawberry, apple, and peach. Theor Appl Genet. 2012;125(2):311–27.
Article
PubMed
CAS
Google Scholar
Castro P, Stafne ET, Clark JR, Lewers KS. Genetic map of the primocane-fruiting and thornless traits of tetraploid blackberry. Theor Appl Genet. 2013;126(10):2521–32.
Article
PubMed
CAS
Google Scholar
VanBuren R, Bryant D, Bushakra JM, Vining KJ, Edger PP, Rowley ER, Priest HD, Michael TP, Lyons E, Filichkin SA, Dossett M, Finn CE, Bassil NV, Mockler TC. The genome of black raspberry (Rubus occidentalis). Plant J. 2016;87:535–47.
Article
PubMed
CAS
Google Scholar
Graham J, Smith K, Tierney I, MacKenzie K, Hackett CA. Mapping gene H controlling cane pubescence in raspberry and its association with resistance to cane botrytis and spur blight, rust and cane spot. Theor Appl Genet. 2006;112:818–31.
Article
PubMed
CAS
Google Scholar
Graham J, Hackett CA, Smith K, Woodhead M, MacKenzie K, Tierney I, Cooke D, Bayer M. Towards an understanding of the nature of resistance to Phytophthora root rot in red raspberry: is it mainly root vigour? Theor Appl Genet. 2011;123:585–601.
Article
PubMed
CAS
Google Scholar
Graham J, Hackett CA, Smith K, Karley A, Mitchell C, Roberts H, O'Neill T. Genetic and environmental regulation of plant architectural traits and opportunities for pest and disease control in raspberry. Ann Appl Biol. 2014;165:318–28.
Article
Google Scholar
Woodhead M, Weir A, Smith K, McCallum S, MacKenzie K, Graham J. Functional markers for red raspberry. J Am Soc Hortic Sci. 2010;135(5):418–27.
Google Scholar
Woodhead M, Weir A, Smith K, McCallum S, Jennings N, Hackett CA, Graham J. Identification of QTLs for cane splitting in red raspberry (Rubus idaeus). Mol Breed. 2013;31:111–22.
Article
Google Scholar
Kassim A, Poette J, Paterson A, Zait D, McCallum S, Woodhead M, Smith K, Hackett CA, Graham J. Environmental and seasonal influences on red raspberry anthocyanin antioxidant contents and identification of quantitative traits loci (QTL). Mol Nut Food Res. 2009;53:625–34.
Article
CAS
Google Scholar
McCallum S, Woodhead M, Hackett CA, Kassim A, Paterson A, Graham J. Genetic and environmental effects influencing fruit colour and QTL analysis in raspberry. Theor Appl Genet. 2010;121(4):611–27.
Article
PubMed
CAS
Google Scholar
Paterson A, Kassim A, McCallum S, Woodhead M, Smith K, Zait D, Graham J. Environmental and seasonal influences on red raspberry flavour volatiles and identification of quantitative trait loci (QTL) and candidate genes. Theor Appl Genet. 2013;126:33–48.
Article
PubMed
CAS
Google Scholar
Simpson CG, Cullen D, Hackett C, Smith K, Hallett P, McNicol J, Woodhead M, Graham J. Mapping and expression of genes associated with raspberry fruit ripening and softening. Theor Appl Genet. 2016;130:557–72.
Article
PubMed
CAS
Google Scholar
Leggett RM, Clavijo BJ, Clissold L, Clark MD, Caccamo M. NextClip: an analysis and read preparation tool for Nextera long mate pair libraries. Bioinformatics. 2014;30:566–8.
Article
PubMed
CAS
Google Scholar
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27:578–9.
Article
PubMed
CAS
Google Scholar
Arumuganathan K, Earle ED. Nuclear DNA content of some important plant species. Plant Mol Biol Report. 1991;9:208–18.
Article
CAS
Google Scholar
Poland JA, Brown PJ, Sorrells ME, Jannink JL. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One. 2012;7:e32253.
Article
PubMed
PubMed Central
CAS
Google Scholar
Russell JR, Hackett CA, Hedley PE, Liu H, Milne L, Bayer M, Marshall D, Jorgensen L, Gordon S, Brennan RM. The use of genotyping by sequencing in blackcurrant (Ribes nigrum) - developing high-resolution linkage maps in species without reference genome sequences. Mol Breed. 2014;33:835–49.
Article
CAS
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5.
Article
PubMed
CAS
Google Scholar
Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000;16:276–7.
Article
PubMed
CAS
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:1207.3907 [q-bio.GN]2012.
Van Ooijen JW. MapQTL ® 5. Wageningen, Netherlands: Software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V; 2004.
Google Scholar
Sokal RR, Rohlf FJ. Biometry: the principles and practice of statistics in biological research. 3rd ed. New York: WH Freeman; 1995.
Google Scholar
Van Ooijen JW. JoinMap ® 4. Wageningen, Netherlands: Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V; 2006.
Google Scholar
Hackett CA, Broadfoot LB. Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity. 2003;90:33–8.
Article
PubMed
CAS
Google Scholar
Preedy KF, Hackett CA. A rapid marker ordering approach for high-density genetic linkage maps in experimental autotetraploid populations using multidimensional scaling. Theor Appl Genet. 2016;129(11):2117–32.
Article
PubMed
CAS
Google Scholar
Hackett CA, McLean K, Bryan G. Linkage analysis and QTL mapping using SNP dosage data in a tetraploid potato mapping population. PLoS One. 2013;8(5):e63939.
Article
PubMed
PubMed Central
Google Scholar
Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE. 1989;77:257–86.
Article
Google Scholar
Van Os H, Stam P, Visser RG, van Eck HJ. RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet. 2005;112:30–40.
Article
PubMed
CAS
Google Scholar
Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, Shaw PD, Marshall D. Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform. 2013;14:193–202.
Article
PubMed
CAS
Google Scholar
Wu CY, You CJ, Li CS, Long T, Chen GX, Byrne ME, Zhang QF. RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci U S A. 2008;105(35):12915–20.
Article
PubMed
PubMed Central
Google Scholar
Fornara F, de Montaigu A, Coupland G. SnapShot: Control of flowering in Arabidopsis. Cell. 2010;141(3)
Pin PA, Nilsson O. The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Env. 2012;35(10):1742–55.
Article
CAS
Google Scholar
Seo E, Yu J, Ryu KH, Lee MM, Lee I. WEREWOLF, a regulator of root hair pattern formation, controls flowering time through the regulation of FT mRNA stability. Plant Physiol. 2011;156(4):1867–77.
Article
PubMed
PubMed Central
CAS
Google Scholar
McKenzie K, Williamson S, Smith K, Woodhead M, McCallum S, Graham J. Characterisation of the Gene H region in red raspberry: exploring its role in cane morphology, disease resistance, and timing of fruit ripening. J Hort. 2015;2:3.
Google Scholar
Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev. 2007;21(4):397–402.
Article
PubMed
PubMed Central
CAS
Google Scholar
Goetz M, Hooper LC, Johnson SD, Rodrigues JCM, Vivian-Smith A, Koltunow AM. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol. 2007;145(2):351–66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pandolfini T, Molesini B, Spena A. Molecular dissection of the role of auxin in fruit initiation. Trends in Pl Sci. 2007;12(8):327–9.
Article
CAS
Google Scholar
Trainotti L, Tadiello A, Casadoro G. The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J Exp Bot. 2007;58:3299–308.
Article
PubMed
CAS
Google Scholar
McAtee P, Karim S, Schaffer R, David K. A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front Plant Sci. 2013;4
Tadiello A, Longhi S, Moretto M, Ferrarini A, Tononi P, Farneti B, Busatto N, Vrhovsek U, dal Molin A, Avanzato C, Biasioli F, Cappellin L, Scholz M, Velasco R, Trainotti L, Delledonne M, Costa F. Interference with ethylene perception at receptor level sheds light on auxin and transcriptional circuits associated with the climacteric ripening of apple fruit (Malus x domestica Borkh.). Plant J. 2016;88(6):963–75.
Article
PubMed
CAS
Google Scholar