Robinson AF. Reniform in U.S. cotton: when, where, why, and some remedies. Annu Rev Phytopathol. 2007;45:263–88.
Article
PubMed
CAS
Google Scholar
Koenning SR, Wrather JA, Kirkpatrick TL, Walker NR, Starr JL, Mueller JD. Plant-parasitic nematodes attacking cotton in the United States: old and emerging production challenges. Plant Dis. 2004;88:100–13.
Article
Google Scholar
Lawrence K, Hagan A, Olsen M, Faske T, Hutmacher R, Mueller J, et al. Cotton disease loss estimate committee report, 2015. In: Proceedings of the 2016 Beltwide Cotton Conferences. New Orleans; 2016. p. 113–5. http://www.cotton.org/beltwide/index.cfm?page=proceedings.
Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33:531–7.
Article
PubMed
CAS
Google Scholar
Li F, Fan G, Lu C, Xiao G, Zou C, Kohel RJ, et al. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol. 2015;33:524–30.
Article
PubMed
CAS
Google Scholar
Robinson AF, Percival AE. Resistance to Meloidogyne incognita race 3 and Rotylenchulus reniformis in wild accessions of Gossypium hirsutum and G. barbadense from Mexico. J Nematol. 1997;29(4S):746–55.
PubMed
PubMed Central
CAS
Google Scholar
Robinson AF, Bridges AC, Percival AE. New sources of resistance to the reniform (Rotylenchulus reniformis Linford and Oliveira) and root-knot (Meloidogyne incognita (Kofoid & White) Chitwood) nematode in upland (Gossypium hirsutum L.) and sea island (G. barbadense L.) cotton. J Cotton Sci. 2004;8:191–7.
Google Scholar
Yik C-P, Birchfield W. Resistant germplasm in Gossypium species and related plants to Rotylenchulus reniformis. J Nematol. 1984;16:146–53.
PubMed
PubMed Central
CAS
Google Scholar
Erpelding JE, Stetina SR. Genetics of reniform nematode resistance in Gossypium arboreum germplasm line PI 529728. World J Agric Res. 2013;1:48–53.
Google Scholar
Sacks EJ, Robinson AF. Introgression of resistance to reniform nematode (Rotylenchulus reniformis) into upland cotton (Gossypium hirsutum) from Gossypium arboreum and a G. hirsutum/Gossypium aridum bridging line. Field Crops Res. 2009;112:1–6.
Article
Google Scholar
Romano GB, Sacks EJ, Stetina SR, Robinson AF, Fang DD, Gutierrez OA, et al. Identification and genomic location of a reniform nematode (Rotylenchulus reniformis) resistance locus (Ren
ari) introgressed from Gossypium aridum into upland cotton (G. hirsutum). Theor Appl Genet. 2009;120:139–50.
Article
PubMed
PubMed Central
Google Scholar
Robinson AF, Bell AA, Dighe ND, Menz MA, Nichols RL, Stelly DM. Introgression of resistance to nematode Rotylenchulus reniformis into upland cotton (Gossypium hirsutum) from Gossypium longicalyx. Crop Sci. 2007;47:1865–77.
Article
Google Scholar
Gutiérrez OA, Robinson AF, Jenkins JN, McCarty JC, Wubben MJ, Callahan FE, et al. Identification of QTL regions and SSR markers associated with resistance to reniform nematode in Gossypium barbadense L. accession GB713. Theor Appl Genet. 2011;122:271–80.
Article
PubMed
Google Scholar
Bell AA, Robinson AF, Quintana J, Nilesh ND, Menz MA, Stelly DM, et al. Registration of LONREN-1 and LONREN-2 germplasm lines of upland cotton resistant to reniform nematode. J Plant Reg. 2014;8:187–90.
Article
Google Scholar
Sikkens RB, Weaver DB, Lawrence KS, Moore SR, van Santen E. LONREN upland cotton germplasm response to Rotylenchulus reniformis inoculum level. Nematropica. 2011;41:68–74.
Google Scholar
Schrimsher DW, Lawrence KS, Sikkens RB, Weaver DB. Nematicides enhance growth and yield of Rotylenchulus reniformis resistant cotton genotypes. J Nematol. 2014;46:365–75.
PubMed
PubMed Central
Google Scholar
Bell AA, Robinson AF, Quintana J, Duke SE, Starr JL, Stelly DM, et al. Registration of BARBREN-713 germplasm line of upland cotton resistant to reniform and root-knot nematodes. J Plant Reg. 2015;9:89–93.
Article
Google Scholar
Starr JL, Smith CW, Ripple K, Zhou E, Nichols RL, Faske TR. Registration of TAM RKRNR-9 and TAM RKRNR-12 germplasm lines of upland cotton resistant to reniform and root-knot nematodes. J Plant Reg. 2011;5:393–6.
Article
Google Scholar
McCarty JC Jr, Jenkins JN, Wubben MJ, Gutiérrez OA, Hayes RW, Callahan FE, Deng D. Registration of three germplasm lines of cotton derived from Gossypium barbadense L. accession GB713 with resistance to the reniform nematode. J Plant Reg. 2013;7:220–3.
Article
Google Scholar
McCarty JC Jr, Jenkins JN, Wubben MJ, Hayes RW, Callahan FE, Deng D. Registration of six germplasm lines of cotton with resistance to the root-knot and reniform nematodes. J Plant Reg. 2017; https://doi.org/10.3198/jpr2016.09.0044crg.
Stetina SR, Erpelding JE. Gossypium arboreum accessions resistant to Rotylenchulus reniformis. J Nematol. 2016;48:223–30.
Article
PubMed
PubMed Central
Google Scholar
Dighe ND, Robinson AF, Bell AA, Menz MA, Cantrell RG, Stelly DM. Linkage mapping of resistance to reniform nematode in cotton following introgression from Gossypium longicalyx (hutch. & lee). Crop Sci. 2009;49:1151–64.
Article
CAS
Google Scholar
Wubben MJ, McCarty JC Jr, Jenkins JN, Callahan FE, Deng DD. Individual and combined contributions of the Ren
barb1, Ren
barb2, and Ren
barb3 quantitative trait loci to reniform nematode (Rotylenchulus reniformis Linford & Oliveira) resistance in upland cotton (Gossypium hirsutum L.). Euphytica. 2017;213:47.
Article
CAS
Google Scholar
Fang DD, Stetina SR. Improving cotton (Gossypium hirsutum L.) plant resistance to reniform nematodes by pyramiding Ren
1 and Ren
2. Plant Breed. 2011;130:673–8.
Article
Google Scholar
Bolek Y, El-Zik KM, Pepper AE, Bell AA, Magill CW, Thaxton PM, Reddy OUK. Mapping of Verticillium wilt resistance genes in cotton. Plant Sci. 2005;168:1581–90.
Article
CAS
Google Scholar
Ulloa M, Hutmacher RB, Roberts PA, Wright SD, Nichols RL, Davis RM. Inheritance and QTL mapping of Fusarium wilt race 4 resistance in cotton. Theor Appl Genet. 2013;126:1405–18.
Article
PubMed
CAS
Google Scholar
Wang C, Ulloa M, Roberts PA. A transgressive segregation factor (RKN2) in Gossypium barbadense for nematode resistance clusters with gene rkn1 in G. hirsutum. Mol Gen Genomics. 2008;279:41–52.
Article
CAS
Google Scholar
Wang C, Ulloa M, Shi X, Yuan X, Saski C, Yu JZ, Roberts PA. Sequence composition of BAC clones and SSR markers mapped to upland cotton chromosomes 11 and 21 targeting resistance to soil-borne pathogens. Front Plant Sci. 2015;6:791.
PubMed
PubMed Central
Google Scholar
Li R, Rashotte AM, Singh NK, Lawrence KS, Weaver DB, Locy RD. Transcriptome analysis of cotton (Gossypium hirsutum L.) genotypes that are susceptible, resistant, and hypersensitive to reniform nematode (Rotylenchulus reniformis). PLoS One. 2015;10:e0143261.
Article
PubMed
PubMed Central
CAS
Google Scholar
Said JI, Lin Z, Zhang X, Song M, Zhang J. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Gen. 2013;14:776.
Article
CAS
Google Scholar
Zhang J, Yu J, Pei W, Li X, Said J, Song M, Sanogo S. Genetic analysis of Verticillium wilt resistance in a backcross inbred line population and a meta-analysis of quantitative trait loci for disease resistance in cotton. BMC Gen. 2015;16:577.
Article
CAS
Google Scholar
Mackay I, Powell W. Methods for linkage disequilibrium mapping in crops. Trends Plant Sci. 2007;12:57–63.
Article
PubMed
CAS
Google Scholar
Lipka AE, Kandianis CB, Hudson ME, Yu J, Drnevich J, Bradbury PJ, et al. From association to prediction: statistical methods for the dissection and selection of complex traits in plants. Curr Opin Plant Biol. 2015;24:110–8.
Article
PubMed
Google Scholar
Abdurakhmonov IY, Saha S, Jenkins JN, Buriev ZT, Shermatov SE, Scheffler BE, et al. Linkage disequilibrium based association mapping of fiber quality traits in G hirsutum L variety germplasm. Genetica. 2009;136:401–17.
Article
PubMed
Google Scholar
Zhao Y, Wang H, Chen W, Li Y. Genetic structure, linkage disequilibrium and association mapping of Verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population. PLoS One. 2014;9:e86308.
Article
PubMed
PubMed Central
CAS
Google Scholar
Poland JA, Rife TW. Genotyping-by-sequencing for plant breeding and genetics. Plant Gen. 2012;5:92–102.
Article
CAS
Google Scholar
Hulse-Kemp AM, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang DD, et al. Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3 Genes Genomes Genet. 2015;5:1187–209.
Google Scholar
Li R, Erpelding JE. Genetic diversity analysis of Gossypium arboreum germplasm accessions using genotyping-by-sequencing. Genetica. 2016;144:535–45.
Article
PubMed
CAS
Google Scholar
Arias RS, Stetina SR, Tonos JL, Scheffler JA, Scheffler BE. Microsatellites reveal genetic diversity in Rotylenchulus reniformis populations. J Nematol. 2009;41:146–56.
PubMed
PubMed Central
CAS
Google Scholar
Thies JA, Merrill SB, Corley EL. Red food coloring stain: new, safer procedures for staining nematodes in roots and egg masses on root surfaces. J Nematol. 2002;34:179–81.
PubMed
PubMed Central
Google Scholar
Schmitt DP, Shannon G. Differentiating soybean responses to Heterodera glycines races. Crop Sci. 1992;32:275–7.
Article
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:e19379.
Article
PubMed
PubMed Central
CAS
Google Scholar
Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, et al. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One. 2014;9:e90346.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, et al. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet. 2014;46:567–72.
Article
PubMed
CAS
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics. 2009;25:1754–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, et al. Mixed linear model approach adapted for genome-wide association studies. Nat Genet. 2010;42:355–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012;28:2397–9.
Article
PubMed
CAS
Google Scholar
Turner SD. qqman: an R package for visualizing GWAS results using Q-Q and Manhattan plots. bioRxiv. 2014. https://doi.org/10.1101/005165.
Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.
Article
PubMed
CAS
Google Scholar
Flint-Garcia SA, Thornsberry JM, Buckler ES. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol. 2003;54:357–74.
Article
PubMed
CAS
Google Scholar
Stich B, Melchinger AE, Piepho H-P, Heckenberger M, Maurer HP, Reif JC. A new test for family-based association mapping with inbred lines from plant breeding programs. Theor Appl Genet. 2006;113:1121–30.
Article
PubMed
Google Scholar
Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, et al. The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet. 2002;30:190–3.
Article
PubMed
CAS
Google Scholar
Mather KA, Caicedo AL, Polato NR, Olsen KM, McCouch S, Purugganan MD. The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics. 2007;177:2223–32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hyten DL, Choi I-Y, Song Q, Shoemaker RC, Nelson RL, Costa JM, et al. Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics. 2007;175:1937–44.
Article
PubMed
PubMed Central
CAS
Google Scholar
Su J, Fan S, Li L, Wei H, Wang C, Wang H, et al. Detection of favorable QTL alleles and candidate genes for lint percentage by GWAS in Chinese upland cotton. Front Plant Sci. 2016;7:1576.
PubMed
PubMed Central
Google Scholar
Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11:499–511.
Article
PubMed
CAS
Google Scholar
Weaver DB, Lawrence KS, van Santen E. Reniform nematode resistance in upland cotton germplasm. Crop Sci. 2007;47:19–24.
Article
Google Scholar
Desta ZA, Ortiz R. Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci. 2014;19:592–601.
Article
PubMed
CAS
Google Scholar
Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444:323–9.
Article
PubMed
CAS
Google Scholar
Li R, Rashotte AM, Singh NK, Weaver DB, Lawrence KS, Locy RD. Integrated signaling networks in plant responses to sedentary endoparasitic nematodes: a perspective. Plant Cell Rep. 2015;34:5–22.
Article
PubMed
CAS
Google Scholar
Zhao Y-J, Cheng Q-Q, Su P, Chen X, Wang X-J, Gao W, et al. Research progress relating to the role of cytochrome P450 in the biosynthesis of terpenoids in medicinal plants. Appl Microbiol Biotechnol. 2014;98:2371–83.
Article
PubMed
CAS
Google Scholar
Rushton PJ, Somssich IE, Ringler P, Shen QJ. WRKY transcription factors. Trends Plant Sci. 2010;15:247–58.
Article
PubMed
CAS
Google Scholar
Mazarei M, Puthoff DP, Hart JK, Rodermel SR, Baum TJ. Identification and characterization of a soybean ethylene-responsive element-binding protein gene whose mRNA expression changes during soybean cyst nematode infection. Mol Plant-Microbe Interact. 2002;15:577–86.
Article
PubMed
CAS
Google Scholar
Mazarei M, Liu W, Al-Ahmad H, Arelli PR, Pantalone VR, Stewart CN. Gene expression profiling of resistant and susceptible soybean lines infected with soybean cyst nematode. Theor Appl Genet. 2011;123:1193–206.
Article
PubMed
CAS
Google Scholar