FAOSTAT Data [Internet]. FAOSTAT. [cited 2018 Mar 27]. Available from: http://www.fao.org/faostat/en/#data.
National Statistics for Cherry [Internet]. NASS. [cited 2018 Mar 27]. Available from: https://quickstats.nass.usda.gov/results/A8988197-374E-3950-BA97-9CBECA511544?pivot=short_desc.
Sweet Cherry Production Up 36 Percent [Internet]. NASS. [cited 2018 Mar 27]. Available from: https://www.nass.usda.gov/Statistics_by_State/Washington/Publications/Fruit/2017/CH06.pdf.
Yue C, Gallardo RK, Luby JJ, Rihn AL, McFerson JR, McCracken V, et al. An evaluation of U.S. tart and sweet cherry producers trait prioritization: evidence from audience surveys. Hortscience. 2014;49:931–7.
Google Scholar
Zheng X, Yue C, Gallardo K, McCracken V, Luby J, McFerson J. What attributes are consumers looking for in sweet cherries? Evidence from choice experiments. J Agric Resour Econ. 2016;45:124–42.
Article
Google Scholar
Miller D, Casavant K, Buteau J. An analysis of Japanese consumer preferences for Pacific Northwest and Japanese sweet cherries. 1986. Report No.: XB0974.
Crisosto CH, Crisosto GM, Metheney P. Consumer acceptance of ‘brooks’ and ‘Bing’ cherries is mainly dependent on fruit SSC and visual skin color. Postharvest Biol Technol. 2003;28:159–67.
Article
Google Scholar
Hu Y. Sensory influences on consumers’ willingness to pay: the apple and cherry markets [doctoral dissertation], [Pullman WA]: Washington state university; 2007.
Google Scholar
Gallardo RK, Li H, McCracken V, Yue C, Luby J, McFerson JR. Market intermediaries’ willingness to pay for apple, peach, cherry, and strawberry quality attributes. Agribusiness. 2015;31:259–80.
Article
Google Scholar
Gallardo RK, Li H, Yue C, Luby J, McFerson JR, McCracken V. Market intermediaries’ ratings of importance for rosaceous fruits’ quality attributes. Int food Agribus. Manag Rev. 2015;18:121–54.
Google Scholar
Sweet Cherries Grades and Standards [Internet]. USDA Agric. Mark. Serv. [cited 2018 Mar 27]. Available from: https://www.ams.usda.gov/grades-standards/sweet-cherries-grades-and-standards.
Olmstead JW, Ophardt DR, Lang GA. Sweet cherry breeding at Washington State University. Acta Hortic. 2000:103–10.
Oraguzie NC, Watkins CS, Chavoshi MS, Peace C. Emergence of the Pacific northwest sweet cherry breeding program. Acta Hortic. 2017:73–8.
Haldar S, Haendiges S, Edge-Garza D, Oraguzie N, Olmstead J, Peace C. Applying genetic markers for self-compatibility in the WSU sweet cherry breeding program. ISHS. Acta Hortic. 2009;859.
Sandefur P, Oraguzie N, Peace C. A DNA test for routine prediction in breeding of sweet cherry fruit color, Pav-R f -SSR. New Strateg Plant Improv. 2016;36:1–11.
CAS
Google Scholar
Quero-García J, Campoy JA, Castède S, Pitiot C, Barreneche T, Lerigoleur-Balsemin E, et al. Breeding sweet cherries at INRA-Bordeaux: from conventional techniques to marker-assisted selection. Acta Hortic. 2017:1–14.
Iezzoni A. Variance components and sampling procedures for fruit size and quality in sour cherry. Hortscience. 1986;21:1040–2.
Google Scholar
Rosyara U, Bink MAM, van de Weg E, Zhang G, Wang D, Sebolt A, et al. Fruit size QTL identification and the prediction of parental QTL genotypes and breeding values in multiple pedigreed populations of sweet cherry. Mol Breed. 2013;32:875–87.
Article
Google Scholar
Srivastava K, Verma M, Ahmad N, Ravi S, Ahmad S. Genetic variability and divergence analysis in sweet cherry (Prunus avium L.). Indian J Hortic. 2014;71:156–61.
Google Scholar
Besford RT, Hand P, Peppitt SD, Richardson CM, Thomas B. Phase change in Prunus avium: differences between juvenile and mature shoots identified by 2-dimensional protein separation and in vitro translation of mRNA. J Plant Physiol. 1996;147:534–8.
Article
CAS
Google Scholar
Henderson CR. Sire evaluation and genetic trends. J Anim Sci. 1973;1973:10–41.
Article
Google Scholar
Lynch M, Walsh B. Genetic and analysis of quantitative traits. Sunderland, MA: Sinauer Associates, Inc; 1998.
Google Scholar
E, Silva FF, Viana JMS, Faria VR, de Resende MDV. Bayesian inference of mixed models in quantitative genetics of crop species. Theor Appl Genet. 2013;126:1749–61. https://doi.org/10.1007/s00122-013-2089-6.
Henderson CR. Use of relationships among sires to increase accuracy of sire evaluation. J Dairy Sci. 1975;58:1731–8.
Article
Google Scholar
Hayes B, Visscher P, Goddard M. Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res. 2009;91.
Vitezica ZG, Varona L, Legarra A. On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics. 2013;195:1223–30.
Article
PubMed
PubMed Central
Google Scholar
Muñoz PR, Resende MFR, Gezan SA, Resende MDV, de los Campos G, Kirst M, et al. Unraveling additive from non-additive effects using genomic relationship matrices. Genetics. 2014.
Habier D, Fernando RL, Dekkers JCM. The impact of genetic relationship information on genome-assisted breeding values. Genetics. 2007;177.
Vela-Avitua S, Meuwissen THE, Luan T, Odegard J. Accuracy of genomic selection for a sib-evaluated trait using identity-by-state and identity-by-descent relationships. Genet Sel Evol GSE. 2015;47:9.
Article
PubMed
Google Scholar
Junqueira VS, Cardoso FF, Oliveira MM, Sollero BP, Silva FF, Lopes PS. Use of molecular markers to improve relationship information in the genetic evaluation of beef cattle tick resistance under pedigree-based models. J Anim Breed Genet. 2017;134:14–26.
Article
CAS
PubMed
Google Scholar
Durel CE, Laurens F, Fouillet A, Lespinasse Y. Utilization of pedigree information to estimate genetic parameters from large unbalanced data sets in apple. Theor Appl Genet. 1998;96:1077–85.
Article
Google Scholar
de Souza VAB, Byrne DH, Taylor JF. Predicted breeding values for nine plant and fruit characteristics of 28 peach genotypes. J Am Soc Hortic Sci. 2000;125:460–5.
Google Scholar
Kouassi A, Durel C-E, Costa F, Tartarini S, van de Weg E, Evans K, et al. Estimation of genetic parameters and prediction of breeding values for apple fruit-quality traits using pedigreed plant material in Europe. Tree Genet Genomes. 2009;5:659–72.
Article
Google Scholar
Stephens MJ, Alspach PA, Beatson RA, Winefield C, Buck EJ. Genetic parameters and breeding for yield in red raspberry. J Am Soc Hortic Sci. 2012;137:229–35.
Google Scholar
Whitaker VM, Osorio LF, Hasing T, Gezan S. Estimation of genetic parameters for 12 fruit and vegetative traits in the University of Florida strawberry breeding population. J Am Soc Hortic Sci. 2012;137:316–24.
Google Scholar
Fresnedo-Ramírez J, Crisosto CH, Gradziel TM, Famula TR. Pedigree correction and estimation of breeding values for peach genetic improvement. Acta Hortic. 2015:249–56.
Gezan SA, Osorio LF, Verma S, Whitaker VM. An experimental validation of genomic selection in octoploid strawberry. Hortic Res. 2017;4:16070.
Article
PubMed
PubMed Central
Google Scholar
Tancred SJ, Zeppa AG, Cooper M, Stringer JK. Heritability and patterns of inheritance of the ripening date of apples. Hortscience. 1995;30:325–8.
Google Scholar
Hardner CM, Kumar S, Peace CM, Luby J, Evans KM. Reconstructing relationship matrices from dense SNP arrays for the prediction of genetic potential in unreplicated multilocation plantings of apple progeny. Acta Hortic. 2016:275–82.
Furlani RCM, de MMLT, de RMDV, Furlani Junior E, Gonçalves P de S, Valério Filho WV, et al. Estimation of variance components and prediction of breeding values in rubber tree breeding using the REML/BLUP procedure. Genet Mol Biol. 2005;28:271–6.
Article
Google Scholar
Hardner CM, Healey AL, Downes G, Herberling M, Gore PL. Improving prediction accuracy and selection of open-pollinated seed-lots in Eucalyptus dunnii Maiden using a multivariate mixed model approach. Ann For Sci. 2016;73:1035–46.
Imai A, Kuniga T, Yoshioka T, Nonaka K, Mitani N, Fukamachi H, et al. Evaluation of the best linear unbiased prediction method for breeding values of fruit-quality traits in citrus. Tree Genet Genomes. 2016;12:119.
Article
Google Scholar
Minamikawa MF, Nonaka K, Kaminuma E, Kajiya-Kanegae H, Onogi A, Goto S, et al. Genome-wide association study and genomic prediction in citrus: potential of genomics-assisted breeding for fruit quality traits. Sci Rep. 2017;7:4721.
Article
PubMed
PubMed Central
Google Scholar
Hill WG, Goddard ME, Visscher PM. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet. 2008;4:e1000008.
Article
PubMed
PubMed Central
Google Scholar
Kumar S, Molloy C, Muñoz P, Daetwyler H, Chagne D, Volz R. Genome-enabled estimates of additive and nonadditive genetic variances and prediction of apple phenotypes across environments. G3. 2015;5:2711–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iezzoni A, Weebadde C, Luby J, Yue C, van de Weg E, Fazio G, et al. RosBREED: enabling marker-assisted breeding in Rosaceae. Acta Hortic. 2010;(859):389–94.
Long L, Kaiser C. Sweet cherry rootstocks for the Pacific Northwest. Corvallis: Oregon State University; 2010 p. 1–8. Report No.: PNW 619.
Peace C, Luby J, Van de Weg WE, Bink M, Iezzoni A. A strategy for developing representative germplasm sets for systematic QTL validation, demonstrated for apple, peach, and sweet cherry. Tree Genet Genomes. 2014;10:1679–94.
Article
Google Scholar
Webster AD. Rootstock and interstock effects on deciduous fruit tree vigour, precocity, and yield productivity. N Z J Crop Hortic Sci. 1995;23:373–82.
Article
Google Scholar
Usenik V, Fajt N, Ătampar F. Effects of rootstocks and training system on growth, precocity and productivity of sweet cherry. J Hortic Sci Biotechnol. 2006;81:153–7.
Article
Google Scholar
Whiting MD, Lang G, Ophardt D. Rootstock and training system affect sweet cherry growth, yield, and fruit quality. Hortscience. 2005;40:582–6.
Google Scholar
Chavoshi M, Watkins C, Oraguzie B, Zhao Y, Iezzoni A, Oraguzie N. Phenotyping protocol for sweet cherry (Prunus avium L.) to facilitate an understanding of trait inheritance. Am Pomol Soc. 2014;68:125–34.
Google Scholar
Washington State University. AgWeatherNet Roza Station Data [Internet]. AgWeatherNet. [cited 2018 Mar 27]. Available from: www.weather.wsu.edu.
McMaster G, Wilhelm W. Growing degree-days: one equation, two interpretations. Agric For Meteorol. 1997;87:291–300.
Article
Google Scholar
Peace C, Bassil N, Main D, Ficklin S, Rosyara UR, Stegmeir T, et al. Development and evaluation of a genome-wide 6K SNP Array for diploid sweet cherry and tetraploid sour cherry. PLoS One. 2012;7:e48305.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai L, Voorrips RE, van de Weg E, Peace C, Iezzoni A. Genetic structure of a QTL hotspot on chromosome 2 in sweet cherry indicates positive selection for favorable haplotypes. Mol Breed. 2017;37:85.
Article
Google Scholar
Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet. 2009;84:210–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wimmer V, Albrecht T, Auinger H-J, Schoen C-C. Synbreed: a framework for the analysis of genomic prediction data using R. Bioinformatics. 2012;28:2086–7.
Article
CAS
PubMed
Google Scholar
Butler D, Cullis B, Gilmour A, Gogel B. Analysis of mixed models for S language environments: ASReml-R reference manual (version 3). The State of Queensland, Department of Primary Industries and. Fisheries. 2009.
R Development Core Team. R: A language and environment for statistical computing [Internet]. 2011. Available from: http://www.R-project.org/.
Endelman JB. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome. 2011;4:25–255.
Article
Google Scholar
VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91:4414–23.
Article
CAS
PubMed
Google Scholar
Su G, Christensen OF, Ostersen T, Henryon M, Lund MS. Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers. PLoS One. 2012;7:e45293.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piaskowski J. Genomic dominance relationship matrix [internet]. 2017. Available from: https://github.com/jpiaskowski/Genomic-Dominance-Relationship-Matrix.
Google Scholar
Brien C. asremlPlus [Internet]. 2016. Available from: https://cran.r-project.org/web/packages/asremlPlus/asremlPlus.pdf.
Gabriel K. The biplot graphic display of matrices with application to principal component analysis. Biometrika. 1971;58:453–67.
Article
Google Scholar
Rodriguez-Almeida FA, Van Vleck LD, Willham RL, Northcutt SL. Estimation of non-additive genetic variances in three synthetic lines of beef cattle using an animal model. J Anim Sci. 1995;73:1002–11.
Article
CAS
PubMed
Google Scholar
Pante M, Gjerde B, McMillan I, Misztal I. Estimation of additive and dominance genetic variances for body weight at harvest in rainbow trout, Oncorhynchus mykiss. Aquaculture. 2002;204:383–92.
Article
Google Scholar
Gallardo JA, Lhorente JP, Neira R. The consequences of including non-additive effects on the genetic evaluation of harvest body weight in Coho salmon (Oncorhynchus kisutch). Genet Sel Evol. 2010;42:19.
Article
PubMed
PubMed Central
Google Scholar
Gamal El-Dien O, Ratcliffe B, Klapste J, Porth I, Chen C, El-Kassaby YA. Implementation of the realized genomic relationship matrix to open-pollinated white spruce family testing for disentangling additive from nonadditive genetic effects. G3. 2016;6:743–53.
Article
PubMed
PubMed Central
Google Scholar
Wolfe MD, Kulakow P, Rabbi IY, Jannink J-L. Marker-based estimates reveal significant non-additive effects in clonally propagated cassava (Manihot esculenta): implications for the prediction of total genetic value and the selection of varieties. G3. 2016.
Ceballos H, Kawuki RS, Gracen VE, Yencho GC, Hershey CH. Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theor Appl Genet. 2015;128:1647–67.
Article
PubMed
PubMed Central
Google Scholar
Zhao Y, Athanson B, Whiting M, Oraguzie N. Pedicel-fruit retention force in sweet cherry (Prunus avium L.) varies with genotype and year. Sci Hortic. 2013;150:135–41.
Article
Google Scholar
Schmitz CA, Clark MD, Luby JJ, Bradeen JM, Guan Y, Evans K, et al. Fruit texture phenotypes of the RosBREED U.S. apple reference germplasm set. Hortscience. 2013;48:296–303.
Google Scholar
Cantín CM, Gogorcena Y, Moreno MÁ. Analysis of phenotypic variation of sugar profile in different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J Sci Food Agric. 2009;89:1909–17.
Article
Google Scholar
Mathey MM, Mookerjee S, Mahoney LL, Gündüz K, Rosyara U, Hancock JF, et al. Genotype by environment interactions and combining ability for strawberry families grown in diverse environments. Euphytica. 2017;213:112.
Article
Google Scholar
Clark S, van de Werf J. Genomic best unbiased linear prediction (gBLUP) for the estimation of genomic breeding values. In: Gondro C, van de Werf J, Hayes B, editors. Genome-wide Assoc stud genomic predict. Springer; 2013. p. 321–30.
Chapter
Google Scholar
Heslot N, Jannink J-L, Sorrells ME. Perspectives for genomic selection applications and research in plants. Crop Sci. 2015;55(1):12.
Article
Google Scholar
Dirlewanger E, Quero-Garcia J, Le Dantec L, Lambert P, Ruiz D, Dondini L, et al. Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity. 2012;109:280–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim Y, Kimball JS, Didan K, Henebry GM. Response of vegetation growth and productivity to spring climate indicators in the conterminous United States derived from satellite remote sensing data fusion. Agric For Meteorol. 2014;194:132–43.
Article
Google Scholar
Zhang G, Sebolt A, Sooriyapathirana S, Wang D, Bink M, Olmstead J, et al. Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet Genomes. 2010;6:25–36.
Article
CAS
Google Scholar
De Franceschi P, Stegmeir T, Cabrera A, van der Knaap E, Rosyara UR, Sebolt AM, et al. Cell number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour cherry. Mol Breed. 2013;32:311–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campoy JA, Le Dantec L, Barreneche T, Dirlewanger E, Quero-García J. New insights into fruit firmness and weight control in sweet cherry. Plant Mol Biol Report. 2015;33:783–96.
Article
CAS
Google Scholar
Bassi D, Bartolozzi F, Muzzi E. Patterns and heritability of carboxylic acids and soluble sugars in fruits of apricot (Prunus armeniaca L.). Plant Breed. 1996;115:67–70.
Article
CAS
Google Scholar
Brooks SJ, Moore JN, Quantitative MJB. Qualitative changes in sugar content of peach genotypes [Prunus persica (L.) Batsch]. J Am Soc Hortic Sci. 1993;118:97–100.
CAS
Google Scholar
Genard M, Lescourret F, Gomez L, Habib R. Changes in fruit sugar concentrations in response to assimilate supply, metabolism and dilution: a modeling approach applied to peach fruit (Prunus persica). Tree Physiol. 2003;23:373–85.
Article
CAS
PubMed
Google Scholar
Morandi B, Corelli Grappadelli L, Rieger M, Lo Bianco R. Carbohydrate availability affects growth and metabolism in peach fruit. Physiol Plant. 2008;133:229–41.
Article
CAS
PubMed
Google Scholar
Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, et al. Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet. 1999;98:18–31.
Article
CAS
Google Scholar
Olmstead J, Lang GA. Leaf disk assay for screening sweet cherry genotypes for susceptibility to powdery mildew. Hortscience. 2000;35:274–7.
Google Scholar
Olmstead J, Lang G, Grove G. Inheritance of powdery mildew resistance in sweet cherry. Hortscience. 2001;36:337–40.
CAS
Google Scholar
Wilfert L, Schmid-Hempel P. The genetic architecture of susceptibility to parasites. BMC Evol Biol 2008;8:187–187.
Divya B, Biswas A, Robin S, Rabindran R, Joel AJ. Gene interactions and genetics of blast resistance and yield attributes in rice (Oryza sativa L.). J Genet. 2014;93:415–24.
Article
CAS
PubMed
Google Scholar
Zhang J, Singh A, Mueller DS, Singh AK. Genome-wide association and epistasis studies unravel the genetic architecture of sudden death syndrome resistance in soybean. Plant J Cell Mol Biol. 2015;84:1124–36.
Article
CAS
Google Scholar
Cach NT, Perez JC, Lenis JI, Calle F, Morante N, Ceballos H. Epistasis in the expression of relevant traits in cassava (Manihot esculenta Crantz) for subhumid conditions. J Hered. 2005;96:586–92.
Article
CAS
PubMed
Google Scholar
Oakey H, Verbyla A, Pitchford W, Cullis B, Kuchel H. Joint modeling of additive and non-additive genetic line effects in single field trials. Theor Appl Genet. 2006;113:809–19.
Article
PubMed
Google Scholar
Bai W, Zhang H, Zhang Z, Teng F, Wang L, Tao Y, et al. The evidence for non-additive effect as the main genetic component of plant height and ear height in maize using introgression line populations. Plant Breed. 2010;129:376–84.
Google Scholar
Wang D, Salah El-Basyoni I, Stephen Baenziger P, Crossa J, Eskridge KM, Dweikat I. Prediction of genetic values of quantitative traits with epistatic effects in plant breeding populations. Heredity. 2012;109:313–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dudley JW, Johnson GR. Epistatic models and pre-selection of markers improve prediction of performance in corn. Mol Breed. 2013;32:585–93.
Article
CAS
Google Scholar
Nazarian A, Gezan SA. Integrating nonadditive genomic relationship matrices into the study of genetic architecture of complex traits. J Hered. 2016;107:153–62.
Article
PubMed
Google Scholar
Cockerham CC. An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present. Genetics. 1954;39:859–82.
CAS
PubMed
PubMed Central
Google Scholar
Holland J. Epistasis and plant breeding. In: Janick J, editor. Plant Breed Rev. Oxford, UK: John Wiley & Sons, Inc.; 2010. p. 27–92.
Chapter
Google Scholar
Tao R, Iezzoni AF. The S-RNase-based gametophytic self-incompatibility system in Prunus exhibits distinct genetic and molecular features. Sci Hortic. 2010;124:423–33.
Article
CAS
Google Scholar
Heffner EL, Sorrells ME, Jannink J-L. Genomic selection for crop improvement. Crop Sci. 2009;49(1):12.
Article
Google Scholar
Ratcliffe B, El-Dien OG, Klapste J, Porth I, Chen C, Jaquish B, et al. A comparison of genomic selection models across time in interior spruce (Picea engelmannii x glauca) using unordered SNP imputation methods. Heredity. 2015;115:547–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muranty H, Troggio M, Sadok IB, Rifaï MA, Auwerkerken A, Banchi E, et al. Accuracy and responses of genomic selection on key traits in apple breeding. Hortic Res. 2015;2:15060.
Article
PubMed
PubMed Central
Google Scholar
Biscarini F, Nazzicari N, Bink M, Arús P, Aranzana MJ, Verde I, et al. Genome-enabled predictions for fruit weight and quality from repeated records in European peach progenies. BMC Genomics. 2017;18:432.
Article
PubMed
PubMed Central
Google Scholar
Garcia MR, Carbonell EA, Asíns MJ. QTL analysis of yield and seed number in Citrus. Theor Appl Genet. 2000;101:487–93.
Article
CAS
Google Scholar
Resende MFR, Muñoz P, Acosta JJ, Peter GF, Davis JM, Grattapaglia D, et al. Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytol. 2012;193:617–24.
Article
PubMed
Google Scholar
Resende RT, Resende MDV, Silva FF, Azevedo CF, Takahashi EK, Silva-Junior OB, et al. Assessing the expected response to genomic selection of individuals and families in Eucalyptus breeding with an additive-dominant model. Heredity. 2017;119:245–55.
Marulanda JJ, Mi X, Melchinger AE, Xu J-L, Würschum T, Longin CFH. Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale. Theor Appl Genet. 2016;129:1901–13.
Article
CAS
PubMed
Google Scholar
Jung S, Ficklin SP, Lee T, Cheng C-H, Blenda A, Zheng P, et al. The genome database for Rosaceae (GDR): year 10 update. Nucleic Acids Res. 2014;42:D1237–44.
Article
CAS
PubMed
Google Scholar