Neale D. Genomics-based breeding in forest trees: are we there yet? BMC Proceedings 2011; 5(Suppl 7):I4.
McKeand S, Mullin T, Byram T, White T. Deployment of genetically improved loblolly and slash pines in the South. J For. 2003;101(3):32–7.
Google Scholar
Xiong JS, Isik F, McKeand SE, Whetten RW. Genetic variation of stem forking in loblolly pine. For Sci. 2010;56(5):429–36.
Google Scholar
Wood ER, Bullock BP, Isik F, McKeand SE. Variation in stem taper and growth traits in a clonal trial of loblolly pine. For Sci. 2015;61(1):76–82.
Google Scholar
Espinoza J, Allen H, McKeand SE, Dougherty P. Stem sinuosity in loblolly pine with nitrogen and calcium additions. For Ecol Manage. 2012;265:55–61.
Article
Google Scholar
Xiong JS, McKeand SE, Whetten RW, Isik FT. Genetics of stem forking and ramicorn branches in a cloned loblolly pine family. For Sci. 2014;60(2):360–6.
Google Scholar
Benchek P, Morris N. How meaningful are heritability estimates of liability? Hum Genet. 2013;132(12):1351–60.
Article
PubMed
Google Scholar
Collada CC, Neale D, Cervera M, Savolainen O, Sánchez AS, Plomion C, Guevara M, Martínez SG. Genomics applied to the study of adaptation in pine species. Investigación agraria Sistemas y recursos forestales. 2005;14(3):292–306.
Article
Google Scholar
Groover A, Devey M, Fiddler T, Lee J, Megraw R, Mitchel-Olds T, Sherman B, Vujcic S, Williams C, Neale D. Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine. Genetics. 1994;138(4):1293–300.
CAS
PubMed
PubMed Central
Google Scholar
Sewell MM, Bassoni DL, Megraw RA, Wheeler NC, Neale DB. Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). I. Physical wood properties. Theor Appl Genet. 2000;101(8):1273–81.
Article
CAS
Google Scholar
Remington DL, O'Malley DM. Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genetics. 2000;155(1):337–48.
CAS
PubMed
PubMed Central
Google Scholar
Neale DB, Sewell MM, Brown GR. Molecular dissection of the quantitative inheritance of wood property traits in loblolly pine. Ann For Sci. 2002;59(5–6):595–605.
Article
Google Scholar
Brown GR, Bassoni DL, Gill GP, Fontana JR, Wheeler NC, Megraw RA, Davis MF, Sewell MM, Tuskan GA, Neale DB. Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L.). III. QTL verification and candidate gene mapping. Genetics. 2003;164(4):1537–46.
CAS
PubMed
PubMed Central
Google Scholar
Goebel N, Warner J. Total and bark volume tables for small diameter Loblolly, Shortleaf, and Virginia Pine in the upper South Carolina Piedmont. Forest Res Ser. 1966;9. Clemson University, Clemson, SC
Falconer DS, Mackay TF. Introduction to quantitative genetics. Harlow: Longman; 1996.
Google Scholar
Eckert AJ, van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, González-Martínez SC, Neale DB. Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics. 2010;185(3):969–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu R, Ma C-X, Painter I, Zeng Z-B. Simultaneous maximum likelihood estimation of linkage and linkage phases in outcrossing species. Theor Popul Biol. 2002;61(3):349–63.
Article
PubMed
Google Scholar
Margarido G, Souza A, Garcia A. OneMap: software for genetic mapping in outcrossing species. Hereditas. 2007;144(3):78–9.
Article
CAS
PubMed
Google Scholar
Haldane J. The combination of linkage values and the calculation of distances between the loci of linked factors. J Genet. 1919;8(29):299–309.
Google Scholar
Westbrook JW, Chhatre VE, Wu L-S, Chamala S, Neves LG, Muñoz P, Martínez-García PJ, Neale DB, Kirst M, Mockaitis K. A consensus genetic map for Pinus taeda and Pinus elliottii and extent of linkage disequilibrium in two genotype-phenotype discovery populations of Pinus taeda. G3: Genes| Genomes| Genetics. 2015;5(8):1685–94.
Article
PubMed
PubMed Central
Google Scholar
Voorrips R. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2002;93(1):77–8.
Article
CAS
PubMed
Google Scholar
Hu Z, Xu S. PROC QTL—A SAS procedure for mapping quantitative trait loci. Int J Plant Genomics. 2009; doi:10.1155/2009/141234.
SAS Institute. SAS/STAT user's guide, version 8, vol. 2. SAS Institute; 1999. https://v8doc.sas.com/sashtml/stat/index.htm. Accessed 13 Oct 2016.
Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989;121(1):185–99.
CAS
PubMed
PubMed Central
Google Scholar
Han L, Xu S. A Fisher scoring algorithm for the weighted regression method of QTL mapping. Heredity. 2008;101(5):453–64.
Article
CAS
PubMed
Google Scholar
Xu S. Further investigation on the regression method of mapping quantitative trait loci. Heredity. 1998;80(3):364–73.
Article
PubMed
Google Scholar
Xu S. Iteratively reweighted least squares mapping of quantitative trait loci. Behav Genet. 1998;28(5):341–55.
Article
CAS
PubMed
Google Scholar
Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics. 1994;138(3):963–71.
CAS
PubMed
PubMed Central
Google Scholar
Shepherd M, Cross M, Dieters MJ, Henry R. Branch architecture QTL for Pinus elliottii var. elliottii x Pinus caribaea var. hondurensis hybrids. Ann For Sci. 2002;59(5–6):617–25.
Article
Google Scholar
Grattapaglia D, Bertolucci FL, Sederoff RR. Genetic mapping of QTLs controlling vegetative propagation in Eucalyptus grandis and E. urophylla using a pseudo-testcross strategy and RAPD markers. Theor Appl Genet. 1995;90(7–8):933–47.
CAS
PubMed
Google Scholar
Soller M, Brody T, Genizi A. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet. 1976;47(1):35–9.
Article
CAS
PubMed
Google Scholar
Beavis WD. QTL analyses: power, precision, and accuracy. Mol Dissection Complex Traits. 1998;1998:145–62.
Google Scholar
Xu S. Theoretical basis of the Beavis effect. Genetics. 2003;165(4):2259–68.
PubMed
PubMed Central
Google Scholar
Neale D, Wheeler N. Mapping of quantitative trait loci in loblolly pine and Douglas-fir: a summary. For Genet. 2004;11(3/4):173.
CAS
Google Scholar
Isik F, Goldfarb B, LeBude A, Li B, McKeand S. Predicted genetic gains and testing efficiency from two loblolly pine clonal trials. Can J For Res. 2005;35(7):1754–66.
Article
Google Scholar
Isik F, Amerson HV, Whetten RW, Garcia SA, Li B, McKeand SE. Resistance of Pinus taeda families under artificial inoculations with diverse fusiform rust pathogen populations and comparison with field trials. Can J For Res. 2008;38(10):2687–96.
Article
Google Scholar
Baltunis B, Wu H, Dungey H, Mullin TJT, Brawner J. Comparisons of genetic parameters and clonal value predictions from clonal trials and seedling base population trials of radiata pine. Tree Genet Genomes. 2009;5(1):269–78.
Article
Google Scholar
Strauss SH, Lande R, Namkoong G. Limitations of molecular-marker-aided selection in forest tree breeding. Can J For Res. 1992;22(7):1050–61.
Article
CAS
Google Scholar
Neale DB, Kremer A. Forest tree genomics: growing resources and applications. Nat Rev Genet. 2011;12(2):111–22.
Article
CAS
PubMed
Google Scholar
Gwaze D, Byram T, Lowe W, Bridgwater F. Genetic parameter estimates for growth and wood density in loblolly pine (Pinus taeda L.), Forest Genetics (Slovak Republic). 2001.
Google Scholar
Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics. 1990;124(3):743–56.
CAS
PubMed
PubMed Central
Google Scholar
McKeand S. The success of tree breeding in the southern US. BioResources. 2014;10(1):1–2.
Article
Google Scholar
Wilcox PL, Amerson HV, Kuhlman EG, Liu BH, O'Malley DM, Sederoff RR. Detection of a major gene for resistance to fusiform rust disease in loblolly pine by genomic mapping. Proc Natl Acad Sci. 1996;93(9):3859–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isik F. Genomic selection in forest tree breeding: the concept and an outlook to the future. New For. 2014;45(3):379–401.
Article
Google Scholar
Zapata-Valenzuela J, Isik F, Maltecca C, Wegrzyn J, Neale D, McKeand S, Whetten R. SNP markers trace familial linkages in a cloned population of Pinus taeda—prospects for genomic selection. Tree Genet Genomes. 2012;8(6):1307–18.
Article
Google Scholar
Zapata-Valenzuela J, Whetten RW, Neale D, McKeand S, Isik F. Genomic estimated breeding values using genomic relationship matrices in a cloned population of loblolly pine. G3: Genes| Genomes| Genetics. 2013;3(5):909–16.
Article
PubMed
PubMed Central
Google Scholar
Resende MFR, Muñoz P, Resende MDV, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin TA, Peter GF, Kirst M. Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics. 2012;190(4):1503–10.
Article
PubMed
PubMed Central
Google Scholar
Bradshaw HD, Stettler RF. Molecular genetics of growth and development in populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics. 1995;139(2):963–73.
CAS
PubMed
Google Scholar
Verhaegen D, Plomion C, Gion JM, Poitel M, Costa P, Kremer A. Quantitative trait dissection analysis in Eucalyptus using RAPD markers: 1. Detection of QTL in interspecific hybrid progeny, stability of QTL expression across different ages. Theor Appl Genet. 1997;95(4):597–608.
Article
Google Scholar
Plomion C, Durel CE, O'Malley DM. Genetic dissection of height in maritime pine seedlings raised under accelerated growth conditions. Theor Appl Genet. 1996;93(5–6):849–58.
Article
CAS
PubMed
Google Scholar
Sewell MM, Davis MF, Tuskan GA, Wheeler NC, Elam CC, Bassoni DL, Neale DB. Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. Theor Appl Genet. 2002;104(2–3):214–22.
Article
CAS
PubMed
Google Scholar
Kerr G, Boswell C. The influence of spring frosts, ash bud moth (Prays fraxinella) and site factors on forking of young ash (Fraxinus excelsior) in southern Britain. Forestry. 2001;74(1):29–40.
Google Scholar
Verhoeven KJF, Jannink JL, McIntyre LM. Using mating designs to uncover QTL and the genetic architecture of complex traits. Heredity. 2005;96(2):139–49.
Article
Google Scholar