Savage GP, Keenan JI: The composition and nutritive value of groundnut kernels. In The Groundnut Crop. Springer; 1994:173–213. http://link.springer.com/chapter/10.1007%2F978-94-011-0733-4_6.
Kochert G, Halward T, Branch WD, Simpson CE. RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet. 1991;81:565–70.
Article
CAS
PubMed
Google Scholar
Bertrand PF. Georgia plant disease loss estimates. Univ Ga Coop Ext Pub Pathol. 1997;1998(81):98–107.
Google Scholar
Culbreath AK, Todd JW, Brown SL. Epidemiology and management of tomato spotted wilt in peanut. Annu Rev Phytopathol. 2003;41:53–75.
Article
CAS
PubMed
Google Scholar
Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimarães P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B. Advances in Arachis genomics for peanut improvement. Biotechnol Adv. 2012;30:639–51.
Article
CAS
PubMed
Google Scholar
Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EKS, Liu X, Gao D, Clevenger J, Dash S. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet. 2016;48:438–46.
Article
CAS
PubMed
Google Scholar
Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S. Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet. 2004;108:1064–70.
Article
CAS
PubMed
Google Scholar
He G, Meng R, Newman M, Gao G, Pittman RN, Prakash CS. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol. 2003;3:3.
Article
PubMed
PubMed Central
Google Scholar
Gautami B, Foncéka D, Pandey MK, Moretzsohn MC, Sujay V, Qin H, Hong Y, Faye I, Chen X, BhanuPrakash A. An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut (Arachis hypogaea L.). PLoS One. 2012;7:e41213.
Article
PubMed
PubMed Central
Google Scholar
Nagy ED, Guo Y, Tang S, Bowers JE, Okashah RA, Taylor CA, Zhang D, Khanal S, Heesacker AF, Khalilian N. A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut. BMC Genomics. 2012;13:469.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shirasawa K, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertioli SCM, Thudi M, Pandey MK, Rami JF, Ka DF, Gowda MVC, Qin H, Guo B, Hong Y, Liang X, Hirakawa H, Tabata S, Isobe S. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the a and b genomes of arachis and divergence of the legume genomes. DNA Res. 2013;20:173–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khedikar YP, Gowda MVC, Sarvamangala C, Patgar KV, Upadhyaya HD, Varshney RK. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet. 2010;121:971–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagy ED, Chu Y, Guo Y, Khanal S, Tang S, Li Y, Dong WB, Timper P, Taylor C, Ozias-Akins P. Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Mol Breed. 2010;26:357–70.
Article
CAS
Google Scholar
Sujay V, Gowda MVC, Pandey MK, Bhat RS, Khedikar YP, Nadaf HL, Gautami B, Sarvamangala C, Lingaraju S, Radhakrishan T, Knapp SJ, Varshney RK. Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed. 2012;30:773–88.
Article
PubMed
Google Scholar
Sarvamangala C, Gowda MVC, Varshney RK. Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). F Crop Res. 2011;122:49–59.
Article
Google Scholar
Tillman BL, Gorbet DW. Peanut cultivar UFT113, United States Patent 8178752. 2012. https://www.google.com/patents/US8178752. Accessed 15 May 2012.
Google Scholar
Mckinney JL. Influence Of Planting Date, Plant Population, And Cultivar On Management Of Spotted Wilt In Peanut (Arachis Hypogaea L.). 2013. http://cms.uflib.ufl.edu/. Accessed Dec 2013.
Google Scholar
Culbreath AK, Gorbet DW, Martinez-Ochoa N, Holbrook CC, Todd JW, Isleib TG, Tillman B. High Levels of Field Resistance to Tomato spotted wilt virus in Peanut Breeding Lines Derived from hypogaea and hirsuta Botanical Varieties. Peanut Sci. 2005;32:20–4.
Article
Google Scholar
Culbreath AK, Srinivasan R. Epidemiology of spotted wilt disease of peanut caused by Tomato spotted wilt virus in the southeastern US. Virus Res. 2011;159:101–9.
Article
CAS
PubMed
Google Scholar
Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, He G, Wang ML, Zhang X, Holbrook CC, Ozias-Akins P, Guo B. An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet. 2012;124:653–64.
Article
PubMed
Google Scholar
Khera P, Pandey MK, Wang H, Feng S, Qiao L, Culbreath AK, Kale S, Wang J, Holbrook CC, Zhuang W. Mapping Quantitative Trait Loci of Resistance to Tomato Spotted Wilt Virus and Leaf Spots in a Recombinant Inbred Line Population of Peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022. PLoS One. 2016;11:e0158452.
Article
PubMed
PubMed Central
Google Scholar
Branch WD, Branch WD. Registration of “Georgia Valencia”peanut. Crop Sci. 2001;41:2002–a.
Article
Google Scholar
Dellaporta SL, Wood J, Hicks JB. A plant DNA minipreparation: version II. Plant Mol Biol Report. 1983;1:19–21.
Article
CAS
Google Scholar
Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, Kochert GD, Kresovich S. Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci. 1999;39:1243–7.
Article
CAS
Google Scholar
Liu Z, Feng S, Pandey MK, Chen X, Culbreath AK, Varshney RK, Guo B. Identification of expressed resistance gene analogs from peanut (Arachis hypogaea L.) expressed sequence tags. J Integr Plant Biol. 2013;55:453–61.
Article
CAS
PubMed
Google Scholar
Gimenes MA, Hoshino AA, Barbosa AVG, Palmieri DA, Lopes CR. Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea). BMC Plant Biol. 2007;7:9.
Article
PubMed
PubMed Central
Google Scholar
Leal-Bertioli SCM, José ACVF, Alves-Freitas DMT, Moretzsohn MC, Guimarães PM, Nielen S, Vidigal BS, Pereira RW, Pike J, Fávero AP, Parniske M, Varshney RK, Bertioli DJ. Identification of candidate genome regions controlling disease resistance in Arachis. BMC Plant Biol. 2009;9:112.
Article
PubMed
PubMed Central
Google Scholar
Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JFM, Ferreira ME. Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol. 2004;4:11.
Article
PubMed Central
Google Scholar
Moretzsohn MC, Barbosa AVG, Alves-Freitas DMT, Teixeira C, Leal-Bertioli SCM, Guimarães PM, Pereira RW, Lopes CR, Cavallari MM, Valls JFM, Bertioli DJ, Gimenes MA. A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol. 2009;9:40.
Article
PubMed
PubMed Central
Google Scholar
He G, Meng R, Gao H, Guo B, Gao G, Newman M, Pittman RN, Prakash CS. Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea L.). Euphytica. 2005;142:131–6.
Article
CAS
Google Scholar
Liang X, Chen X, Hong Y, Liu H, Zhou G, Li S, Guo B. Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biol. 2009;9:35.
Article
PubMed
PubMed Central
Google Scholar
Bertioli DJ, Moretzsohn MC, Madsen LH, Sandal N, Leal-Bertioli SCM, Guimarães PM, Hougaard BK, Fredslund J, Schauser L, Nielsen AM. An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics. 2009;10:45.
Article
PubMed
PubMed Central
Google Scholar
Cuc LM, Mace ES, Crouch JH, Quang VD, Long TD, Varshney RK. Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biol. 2008;8:55.
Article
PubMed
PubMed Central
Google Scholar
Peng Z, Gallo M, Tillman BL, Rowland D, Wang J. Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.). Mol Genet Genomics. 2016;291(1):363–81.
Article
CAS
PubMed
Google Scholar
Tang Wang C, Dao Yang X, Xu Chen D, Lin Yu S, Zhen Liu G, Yi Tang Y, Zhi Xu J. Isolation of simple sequence repeats from groundnut. Electron J Biotechnol. 2007;10:473–80.
Google Scholar
Macedo SE, Moretzsohn MC, Leal-Bertioli SCM, Alves DMT, Gouvea EG, Azevedo VCR, Bertioli DJ. Development and characterization of highly polymorphic long TC repeat microsatellite markers for genetic analysis of peanut. BMC Res Notes. 2012;5:86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moretzsohn MC, Leoi L, Proite K, Guimarães PM, Leal-Bertioli SCM, Gimenes MA, Martins WS, Valls JFM, Grattapaglia D, Bertioli DJ. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet. 2005;111:1060–71.
Article
CAS
PubMed
Google Scholar
Wang H, Penmetsa RV, Yuan M, Gong L, Zhao Y, Guo B, Farmer AD, Rosen BD, Gao J, Isobe S, Bertioli DJ, Varshney RK, Cook DR, He G. Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.). BMC Plant Biol. 2012;12:10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koilkonda P, Sato S, Tabata S, Shirasawa K, Hirakawa H, Sakai H, Sasamoto S, Watanabe A, Wada T, Kishida Y. Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. Mol Breed. 2012;30:125–38.
Article
CAS
PubMed
Google Scholar
Fountain J, Qin H, Chen C, Dang P, Wang ML, Guo B. A Note on Development of a Low-cost and High-throughput SSR-based Genotyping Method in Peanut (Arachis hypogaea L.). Peanut Sci. 2011;38:122–7.
Article
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:e19379.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES. TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS One. 2014;9(2):e90346.
Article
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5.
Article
CAS
PubMed
Google Scholar
Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38:203–8.
Article
CAS
PubMed
Google Scholar
Wang J, Li H, Zhang L, Meng L: Users’ manual of QTL IciMapping version 3.2. Quant Genet Group, Inst Crop Sci Chinese Acad Agric Sci (CAAS), Beijing 2012, 100081. http://www.sciencedirect.com/science/article/pii/S2214514115000161.
Van Ooijen JW. JoinMap 4. Wageningen: Softw Calc Genet Link maps Exp Popul Kyazma BV; 2006.
Google Scholar
Kosambi DD. The estimation of map distances from recombination values. Ann Eugen. 1943;12:172–5.
Article
Google Scholar
Von Bargen S, Salchert K, Paape M, Piechulla B, Kellmann JW. Interactions between the tomato spotted wilt virus movement protein and plant proteins showing homologies to myosin, kinesin and DnaJ-like chaperones. Plant Physiol Biochem. 2001;39:1083–93.
Article
Google Scholar
Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics. 2007;175:361–74.
Article
PubMed
PubMed Central
Google Scholar
Mandal B, Pappu HR, Culbreath a K, Pathology P: Factors Affecting Mechanical Transmission of Tomato spotted wilt virus to Peanut (Arachis hypogaea). 2001(December):1259–1263.
Singh BD, Singh AK. Marker-Assisted Plant Breeding: Principles and Practices. 2015.
Book
Google Scholar
Weinig C, Schmitt J. Environmental effects on the expression of quantitative trait loci and implications for phenotypic evolution. Bioscience. 2004;54:627–35.
Article
Google Scholar
Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica. 2005;142:169–96.
Article
CAS
Google Scholar
Wang H, Pandey M, Qiao L, Qin H, Culbreath A, He G, Varshney R, Scully B. Genetic mapping of quantitative trait loci analysis for disease resistance Using F2 and F5 Generation-based Genetic Maps Derived from “Tifrunner” × “GT-C20” in Peanut. Plant Genome. 2013;6:1771–4.
Article
Google Scholar
Stevens MR, Scott SJ, Gergerich RC. Inheritance of a gene for resistance to tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill. Euphytica. 1991;59:9–17.
Google Scholar
Boiteux LS, De Avila AC. Inheritance of a resistance specific to tomato spotted wilt tospovirus in Capsicum chinense “PI 159236.”. Euphytica. 1994;75:139–42.
Article
Google Scholar
Chen X, Culbreath A, Brenneman T, Holbrook Jr C, Guo B: Identification and cloning of TSWV resistance gene (s) in cultivated peanuts and development of markers for breeding selection. In American Phytopathological Society Abstracts; 2008. https://www.ars.usda.gov/research/publications/publication/?seqNo115=226033.
Chen X, Wang ML, Holbrook C, Culbreath A, Liang X, Brenneman T, Guo B. Identification and characterization of a multigene family encoding germin-like proteins in cultivated peanut (Arachis hypogaea L.). Plant Mol Biol Report. 2011;29:389–403.
Article
CAS
Google Scholar
Barrientos-Priego L, Isleib TG, Pattee HE. Variation in Oil Content Among Mexican and Peruvian hirsuta Peanut Landraces and Virginia-Type hypogaea Lines 1. Peanut Sci. 2002;29:72–7.
Article
Google Scholar
Isleib TG, Holbrook CC, Gorbet DW. Use of plant introductions in peanut cultivar development. Peanut Sci. 2001;28:96–113.
Article
Google Scholar
Holbrook CC, Stalker HT. Peanut breeding and genetic resources. Plant Breed Rev. 2003;22:297–356.
Google Scholar