Pusztai A, Grant G, Bardocz S, Gelencser E, Hajos GY. Novel dietary strategy for overcoming the antinutritional effects of soyabean whey of high agglutinin content. British J Nutr. 1997;77:933–45.
Article
CAS
Google Scholar
Armour JC, Perera RLC, Buchan WC, Grant G. Protease inhibitors and lectins in soya beans and effects of aqueous heat-treatment. J Food Sci and Agril. 1998;78:225–31.
Article
CAS
Google Scholar
Krishnan HB. Characterization of a soybean [Glycine max (L.) Merr.] mutant with reduced levels of kunitz trypsin inhibitor. Plant Sci. 2001;160:979–86.
Article
CAS
PubMed
Google Scholar
Liener IE. Possible adverse effects of soybean anticarcinogens. J Nutr. 1995;125:744–50.
Google Scholar
Roychaudhuri R, Sarath G, Zeece M, Markwell J. Reversible denaturation of soybean Kunitz trypsin inhibitor. ArchivBiochemBiophys. 2003;412:20–6.
CAS
Google Scholar
Moraes R, Soares CB, Colombo LR, Salla MFS, Barros JGA, Piovesan ND, Barros EG, et al. Assisted selection by specific DNA markers for genetic elimination of the kunitz trypsin inhibitor and lectin in soybean seeds. Euphytica. 2006;149:221–6.
Article
Google Scholar
Wang KJ, Xiang HL, Yamashita T, Yoshihito T. Single nucleotide mutation leading to an amino acid substitution in the variant Tik soybean Kunitz trypsin inhibitor (SKTI) identified in Chinese wild soybean (Glycine sojaSieb. & Zucc.). Plant Syst Evol. 2012;298:1–7.
Article
CAS
Google Scholar
Jofuku DK, Schipper RD, Goldberg RB. A frameshift mutation prevents kunitz trypsin inhibitor mRNA accumulation in soybean embryos. The Plant Cell. 1989;1:427–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krishnan HB, Kim WS. A four-nucleotide base-pair deletion in the coding region of the bowman–Birk protease inhibitor gene prevents its accumulation in the seeds of glycine microphylla PI440956. Planta. 2003;217:523–7.
Article
CAS
PubMed
Google Scholar
Donald L, Vadim B, Marina K, Monica A, Schmidt EM, Herman NC. Nielsen reduction of protease inhibitor activity by expression of a mutant bowman-Birk gene in soybean seed. Plant Mol Biol. 2007;64:397–408.
Article
Google Scholar
Shivakumar M, Verma K, Talukdar A, Srivastava N, Lal SK, Sapra RL, Singh KP. Genetic variability and effect of heat treatment on trypsin inhibitor content in soybean [Glycine max (L.) Merrill.]. Legume Res. 2015;38(1):60–5. doi:10.5958/0976-0571.2015.000107.
Article
Google Scholar
Bernard RL, Hymowitz T, Cremeens CR. Registration of “Kunitz” soybean. Crop Sci. 1991;31:232–3.
Google Scholar
Ribaut JM, Jiang C, Hoisington D. Simultaneous experiments on efficiencies of gene introgression by backcrossing. Crop Sci. 2002;42:557–65.
Article
Google Scholar
SaghaiMaroof MA, Jeong SC, Gunduz I, Tucker DM, Buss GR, Tolin SA. Pyramiding of soybean mosaic virus resistance genes by marker-assisted selection. Crop Sci. 2008;48:517–26.
Article
Google Scholar
Deepak R, Rahul K, Mankesh K, Priyanka P, Anjali A, Osman BP, Anju P, Tripta J, Kuldeep S, Harcharan SD. Pyramiding of two bacterial blight resistance and a semi-dwarfing gene in type 3 basmati using marker-assisted selection. Euphytica. 2010. doi:10.1007/s10681-010-0279-8.
Google Scholar
Vikas K, Atul S, Singh SP, Ranjith KE, Vikas C, Sarkel S, Devinder S, Gopala KS, Nagarajan M, et al. Incorporation of blast resistance into “PRR78”, an elite basmati rice restorer line, through marker assisted backcross breeding. Field Crop Res. 2012;128:8–16.
Article
Google Scholar
Howel P, Fiona L, Ruth B, Nick G, Kay T, Wayne P, Alison MS, Andy G. Rapid marker-assisted development of advanced recombinant lines from barley starch mutants. Mol Breed. 2013; DOI 10.1007/s11032-013-9930-0.
Tyagi S, Mir RR, Kaur H, Chhuneja P, Ramesh B, Balyan HS, Gupta PK. Marker-assisted pyramiding of eight QTLs/genes for seven different traits in common wheat (Triticumaestivum L.). Mol Breed. 2014; DOI 10.1007/s11032-014-0027-1.
Varshney RK, Mohan SM, Gaur PM, Chamarthi SK, Singh VK, Srinivasan S, Swapna N, et al. Marker-assisted backcrossing to introgress resistance to Fusarium wilt race 1 and Ascochyta blight in C 214, an elite cultivar of chickpea. Plant Genome. 2014;7(1):1–11.
Article
Google Scholar
Schmidt MA, Hymowitz T, Herman EM. Breeding and characterization of soybean triple null; a stack of recessive alleles of Kunitz trypsin inhibitor, soybean agglutinin, and P34 allergen nulls. Plant Breed. 2015;134(3):310–5. doi:10.1111/pbr.12265.
Article
CAS
Google Scholar
Kim MS, Park MJ, Jeong WH, Nam KC, Chung JI. SSR marker tightly linked to the Ti locus in soybean [glycine max (L.) Merr.]. Euphytica. 2006;152:361–6.
Article
CAS
Google Scholar
Kim MS, Moo RH, Woo HJ, Mo SP, Kyoung JL, Sang IS, Min CK, Woo SJ, Jai HL, Jong C. Confirmation of Satt228 marker tightly linked to the Ti locus in four different soybean populations. Genes Genomics. 2008;30(4):329–36.
Google Scholar
Rani A, Kumar V, Mourya V, Singh RK, Husain SM. Validation of SSR markers linked to null kunitz trypsin inhibitor allele in Indian soybean [Glycine max (L.) Merr.] population. J. Plant Biochem Biotechnol. 2011;20(2):258–61.
Article
Google Scholar
Kumar V, Rani A, Mourya V, Reena R, Khushbu V, Shivakumar M, Lal SK, Talukdar A. Marker assisted selection for development of kunitz trypsin inhibitor free soybean varieties: parental polymorphism study, a few considerations. Indian J Genet. 2011;71(4):372–6.
CAS
Google Scholar
Talukdar A, Shivakumar M, Verma K, Kumar A, Mukherjee K, Lal SK. Genetic elimination of Kunitz trypsin inhibitor (KTI) from DS9712, an Indian soybean variety. Indian J Genet. 2014;74(4 Suppl):608–11.
Google Scholar
Talukdar A, Shivakumar M. Pollination without emasculation: an efficient method of hybridization in soybean (Glycine max L.Merr). Curr Sci. 2012;103(6):628–30.
Google Scholar
Shivakumar M, Gireesh C, Talukdar A. Efficiency and utility of pollination without emasculation (PWE) method in intra and inter specific hybridization in soybean. Indian J Genet. 2016;76(1):98–100.
Google Scholar
Kunitz M. Crystallization of a soybean trypsin inhibitor from soybean. Science. 1945;101:668–9.
Article
CAS
PubMed
Google Scholar
Anderson RL. Effect of steaming on soybean proteins and trypsin inhibitors. J Am Oil Chem Soc. 1992;69:1170–6.
Article
CAS
Google Scholar
Young ND, Tanksley SD. RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor Appl Genet. 1989;77:353–9.
Article
CAS
PubMed
Google Scholar
Hospital F, Chevalet C, Mulsant P. Using markers in gene introgression breeding programme. Genetics. 1992;132:1199–210.
CAS
PubMed
PubMed Central
Google Scholar
Visscher PM, Haley CS, Thompson R. Marker assisted introgression in backcross breeding programme. Genetics. 1996;144:1923–32.
CAS
PubMed
PubMed Central
Google Scholar
Joseph M, Gopalakrishnan K, Sharma RK, Singh VP, Singh AK, Singh NK, Mohapatra T. Combining bacterial resistance and basmati quality characteristics by phenotypic and marker assisted selection in rice. Mol Breed. 2004;13:377–87.
Article
CAS
Google Scholar
Sundaram RM, Vishnupriya MR, Biradar SK, Laha GS, Rani NS, Rao PS, Balachandran SM, Reddy GA, et al. Introduction of bacterial blight resistance into Triguna, a high yielding, mid-early duration variety. Bitechnol J. 2009; doi:10.1002/biot.200800310.
Shahab S, Khalil AS, Mohammad RB, Sepideh T, Seyed G, Hoseini S, Gholam A, Lotfali A. Marker assisted selection for heat tolerance in bread wheat. World Appl Sci J. 2013;21(8):1181–9.
Google Scholar
Vikas KS, Atul S, Singh SP, Ranjith KE, Devinder S, Gopala Krishnan S, Bhowmick PK, Nagarajan M, et al.Marker-assisted simultaneous but stepwise backcross breeding for pyramiding blast resistance genes Piz5 and Pi54 into an elite Basmati rice restorer line ‘PRR78’. Plant Breed. 2013; doi:10.1111/pbr.12077.
Lamkey CM, Helms TC, Goos RJ. Marker-assisted versus phenotypic selection for iron-deficiency chlorosis in soybean. Euphytica. 2013; doi:10.1007/s10681-013-0961-8.
Muthusamy V, Hossain F, Thirunavukkarasu N, Choudhary M, Saha S, et al. Development of b-Carotene Rich Maize Hybrids through Marker-Assisted Introgression of b-carotene hydroxylase Allele. PLoS ONE. 2014; 9(12): e113583. doi:10.1371/
Noraziyah AAS, Mallikarjuna Swamy BP, Ratnam WM, Raman A, Kumar A. Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genet. 2016; DOI 10.1186/s12863-016-0334-0
Hao X, Li X, Yang X, Jiansheng, Li J. Transferring a major QTL for oil content using marker-assisted backcrossing into an elite hybrid to increase the oil content in maize. Mol Breed. 2014; DOI 10.1007/s11032-014-0071-x.
Song B, Shen L, Wei X, Guo B, Tuo Y, Tian F, Han Z, Wang X, Li W, Liu S. Marker-assisted backcrossing of a null allele of the α-subunit of Soybean (Glycine max) β-conglycinin with a Chinese soybean cultivar (a). The development of improved lines. Plant Breed. 2014; DOI: 10.1111/pbr.12203.
Michael TM, William AL, Lyn MW, Ngaire M, Christine RV, White DWR. Expression of the soybean (Kunitz) trypsin inhibitor in leaves of white clover (Trifoliumrepens L.). Plant Science. 2005;168:1211–20.
Article
Google Scholar
Huma H, Khalid MF. Plant protease inhibitors: a defense strategy in plants. Biotechnol Mol Biol Rev. 2007;2(3):068–08.
Google Scholar
Armstrong WB, Kennedy AR, Wan XS, Atiba J, Mclaren E, Meyskens FL. A single-dose administration of bowmen-Birk inhibitor concentrate in patients with oral leukoplakia. Cancer Epidemiolgy Biomark Prev. 2000;9:43–7.
CAS
Google Scholar
Gran B, Tabibzadeh N, Martin A, Ventura ES, Ware JH, Zhang GX, Parr JL, Kennedy AR, Rostami AM. The protease inhibitor, bowman-Birk inhibitor, suppresses experimental autoimmune encephalomyelitis: a potential oral therapy for multiple sclerosis. Mult Scler J. 2006;12(6):688–97.
Article
CAS
Google Scholar