Hall JE: The kidney, hypertension, and obesity. Hypertension. 2003, 41: 625-633. 10.1161/01.HYP.0000052314.95497.78.
Article
PubMed
Google Scholar
Mullins LJ, Bailey MA, Mullins JJ: Hypertension, kidney, and transgenics: a fresh perspective. Physiol Rev. 2006, 86: 709-746. 10.1152/physrev.00016.2005.
Article
CAS
PubMed
Google Scholar
Turak O, Ozcan F, Tok D, Isleyen A, Sokmen E, Tasoglu I, et al: Serum uric acid, inflammation, and nondipping circadian pattern in essential hypertension. J Clin Hypertens (Greenwich). 2013, 15: 7-13. 10.1111/jch.12026.
Article
CAS
Google Scholar
Dornas WC, Silva ME: Animal models for the study of arterial hypertension. J Biosci. 2011, 36: 731-737. 10.1007/s12038-011-9097-y.
Article
PubMed
Google Scholar
Adarichev VA, Korokhov NP, Ostapchuk Ia V, Dymshits GM, Markel AL: Characterization of rat lines with normotensive and hypertensive status using genomic fingerprinting. Genetika. 1996, 32: 1669-1672.
CAS
PubMed
Google Scholar
Markel AL: Development of a new strain of rats with inherited stress-induced arterial hypertension. Genetic hypertension. Edited by: Sassard J. 1992, Colloque INSERM, Paris, 405-407.
Google Scholar
Markel AL, Maslova LN, Shishkina GT, Bulygina VV, Machanova NA, Jacobson GS: Developmental influences on blood pressure regulation in ISIAH rats. Development of the hypertensive phenotype: basic and clinical studies. Edited by: McCarty R, Blizard DA, Chevalier RL. 1999, Elsevier, Amsterdam- Lausanne- NewYork- Oxford- Shannon- Singapore- Tokyo, 493-526.
Google Scholar
Redina OE, Machanova NA, Efimov VM, Markel AL: Rats with inherited stress-induced arterial hypertension (ISIAH strain) display specific quantitative trait loci for blood pressure and for body and kidney weight on chromosome 1. Clin Exp Pharmacol Physiol. 2006, 33: 456-464. 10.1111/j.1440-1681.2006.04387.x.
Article
CAS
PubMed
Google Scholar
Shmerling MD, Filiushina EE, Lazarev VA, Buzueva II, Markel’ AL, Iakobson GS: Ultrastructural changes of kidney corpuscles in rats with hereditary stress-induced arterial hypertension [Article in Russian]. Morfologiia. 2001, 120: 70-74.
CAS
PubMed
Google Scholar
Filyushina EE, Shmerling MD, Buzueva II, Lazarev VA, Markel AL, Yakobson GS: Structural characteristics of renomedullary interstitial cells of hypertensive ISIAH rats. Bull Exp Biol Med. 2013, 155: 408-412. 10.1007/s10517-013-2164-7.
Article
CAS
PubMed
Google Scholar
Markel AL, Redina OE, Gilinsky MA, Dymshits GM, Kalashnikova EV, Khvorostova YV, et al: Neuroendocrine profiling in inherited stress-induced arterial hypertension rat strain with stress-sensitive arterial hypertension. J Endocrinol. 2007, 195: 439-450. 10.1677/JOE-07-0254.
Article
CAS
PubMed
Google Scholar
Marguerat S, Bahler J: RNA-seq: from technology to biology. Cell Mol Life Sci. 2010, 67: 569-579. 10.1007/s00018-009-0180-6.
Article
CAS
PubMed
Google Scholar
Mensah GA, Croft JB, Giles WH: The heart, kidney, and brain as target organs in hypertension. Cardiol Clin. 2002, 20: 225-247. 10.1016/S0733-8651(02)00004-8.
Article
PubMed
Google Scholar
Fedoseeva LA, Antonov EV, Klimov LO, Dymshits GM, Markel AL: Function of the renin-angiotensin-aldosterone system in the ISIAH rats with stress-sensitive arterial hypertension. Renin-angiotensin system: physiology, role in disease and health implications. Edited by: Himura A, Sato T. 2013, Nova, NY, 1-44.
Google Scholar
Pratt JH: Low-renin hypertension: more common than we think?. Cardiol Rev. 2000, 8: 202-206. 10.1097/00045415-200008040-00005.
Article
CAS
PubMed
Google Scholar
Fedoseeva LA, Riazanova MA, Antonov EV, Dymshits GM, Markel’ AL: Renin-angiotensin system gene expression in the kidney and in the heart in hypertensive ISIAH rats. [Article in Russian]. Biomed Khim. 2011, 57: 410-419. 10.18097/pbmc20115704410.
Article
CAS
PubMed
Google Scholar
Eklof AC, Holtback U, Sundelof M, Chen S, Aperia A: Inhibition of COMT induces dopamine-dependent natriuresis and inhibition of proximal tubular Na+, K + -ATPase. Kidney Int. 1997, 52: 742-747. 10.1038/ki.1997.390.
Article
CAS
PubMed
Google Scholar
Helkamaa T, Mannisto PT, Rauhala P, Cheng ZJ, Finckenberg P, Huotari M, et al: Resistance to salt-induced hypertension in catechol-O-methyltransferase-gene-disrupted mice. J Hypertens. 2003, 21: 2365-2374. 10.1097/00004872-200312000-00026.
Article
CAS
PubMed
Google Scholar
Redina OE, Smolenskaya SE, Abramova TO, Ivanova LN, Markel AL: Differential transcriptional activity of kidney genes in hypertensive ISIAH and normotensive WAG rats. Clin Exp Hypertens. 2015, 37: 249-259. 10.3109/10641963.2014.954711.
Article
CAS
PubMed
Google Scholar
Agbor LN, Walsh MT, Boberg JR, Walker MK: Elevated blood pressure in cytochrome P4501A1 knockout mice is associated with reduced vasodilation to omega-3 polyunsaturated fatty acids. Toxicol Appl Pharmacol. 2012, 264: 351-360. 10.1016/j.taap.2012.09.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Friso S, Pizzolo F, Choi SW, Guarini P, Castagna A, Ravagnani V, et al: Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension. Atherosclerosis. 2008, 199: 323-327. 10.1016/j.atherosclerosis.2007.11.029.
Article
CAS
PubMed
Google Scholar
Evans LC, Livingstone DE, Kenyon CJ, Jansen MA, Dear JW, Mullins JJ, et al: A urine-concentrating defect in 11?-hydroxysteroid dehydrogenase type 2 null mice. Am J Physiol Renal Physiol. 2012, 303: F494-502. 10.1152/ajprenal.00165.2012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujita H, Morii T, Fujishima H, Sato T, Shimizu T, Hosoba M, et al: The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney Int. 2014, 85: 579-589. 10.1038/ki.2013.427.
Article
CAS
PubMed
Google Scholar
Brun PJ, Yang KJ, Lee SA, Yuen JJ, Blaner WS: Retinoids: potent regulators of metabolism. Biofactors. 2013, 39: 151-163. 10.1002/biof.1056.
Article
CAS
PubMed
Google Scholar
Pivovarova EN, Dushkin MI, Perepechaeva ML, Kobzev VF, Trufakin VA, Markel’ AL: All signs of metabolic syndrome in the hypertensive ISIAH rats are associated with increased activity of transcription factors PPAR, LXR, PXR, and CAR in the liver. [Article in Russian]. Biomed Khim. 2011, 57: 435-445. 10.18097/pbmc20115704435.
Article
CAS
PubMed
Google Scholar
Frey SK, Nagl B, Henze A, Raila J, Schlosser B, Berg T, et al: Isoforms of retinol binding protein 4 (RBP4) are increased in chronic diseases of the kidney but not of the liver. Lipids Health Dis. 2008, 7: 29-10.1186/1476-511X-7-29.
Article
PubMed
PubMed Central
Google Scholar
Ou HY, Wu HT, Yang YC, Wu JS, Cheng JT, Chang CJ: Elevated retinol binding protein 4 contributes to insulin resistance in spontaneously hypertensive rats. Horm Metab Res. 2011, 43: 312-318. 10.1055/s-0031-1271746.
Article
CAS
PubMed
Google Scholar
Moise AR, Isken A, Dominguez M, de Lera AR, von Lintig J, Palczewski K: Specificity of zebrafish retinol saturase: formation of all-trans-13,14-dihydroretinol and all-trans-7,8- dihydroretinol. Biochemistry. 2007, 46: 1811-1820. 10.1021/bi062147u.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ross AC, Zolfaghari R: Cytochrome P450s in the regulation of cellular retinoic acid metabolism. Annu Rev Nutr. 2011, 31: 65-87. 10.1146/annurev-nutr-072610-145127.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tain YL, Huang LT, Chan JY, Lee CT: Transcriptome analysis in rat kidneys: importance of genes involved in programmed hypertension. Int J Mol Sci. 2015, 16: 4744-4758. 10.3390/ijms16034744.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jung O, Brandes RP, Kim IH, Schweda F, Schmidt R, Hammock BD, et al: Soluble epoxide hydrolase is a main effector of angiotensin II-induced hypertension. Hypertension. 2005, 45: 759-765. 10.1161/01.HYP.0000153792.29478.1d.
Article
CAS
PubMed
Google Scholar
Imig JD: Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. Am J Physiol Renal Physiol. 2005, 289: F496-503. 10.1152/ajprenal.00350.2004.
Article
CAS
PubMed
Google Scholar
Imig JD, Zhao X, Zaharis CZ, Olearczyk JJ, Pollock DM, Newman JW, et al: An orally active epoxide hydrolase inhibitor lowers blood pressure and provides renal protection in salt-sensitive hypertension. Hypertension. 2005, 46: 975-981. 10.1161/01.HYP.0000176237.74820.75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lorenz JN, Nieman M, Sabo J, Sanford LP, Hawkins JA, Elitsur N, et al: Uroguanylin knockout mice have increased blood pressure and impaired natriuretic response to enteral NaCl load. J Clin Invest. 2003, 112: 1244-1254. 10.1172/JCI200318743.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Cotecchia S, Thomas SA, Tanoue A, Tsujimoto G, Faber JE: Gene deletion of dopamine beta-hydroxylase and alpha1-adrenoceptors demonstrates involvement of catecholamines in vascular remodeling. Am J Physiol Heart Circ Physiol. 2004, 287: H2106-2114. 10.1152/ajpheart.00290.2004.
Article
CAS
PubMed
Google Scholar
Khan AH, Sattar MA, Abdullah NA, Johns EJ: Influence of cisplatin-induced renal failure on the alpha(1)-adrenoceptor subtype causing vasoconstriction in the kidney of the rat. Eur J Pharmacol. 2007, 569: 110-118. 10.1016/j.ejphar.2007.04.063.
Article
CAS
PubMed
Google Scholar
Hye Khan MA, Sattar MA, Abdullah NA, Johns EJ: Influence of combined hypertension and renal failure on functional alpha(1)-adrenoceptor subtypes in the rat kidney. Br J Pharmacol. 2008, 153: 1232-1241. 10.1038/bjp.2008.13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yousefipour Z, Newaz M: PPARalpha ligand clofibrate ameliorates blood pressure and vascular reactivity in spontaneously hypertensive rats. Acta Pharmacol Sin. 2014, 35: 476-482. 10.1038/aps.2013.193.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park CW, Kim HW, Ko SH, Chung HW, Lim SW, Yang CW, et al: Accelerated diabetic nephropathy in mice lacking the peroxisome proliferator-activated receptor alpha. Diabetes. 2006, 55: 885-893. 10.2337/diabetes.55.04.06.db05-1329.
Article
CAS
PubMed
Google Scholar
Calkin AC, Giunti S, Jandeleit-Dahm KA, Allen TJ, Cooper ME, Thomas MC: PPAR-alpha and -gamma agonists attenuate diabetic kidney disease in the apolipoprotein E knockout mouse. Nephrol Dial Transplant. 2006, 21: 2399-2405. 10.1093/ndt/gfl212.
Article
CAS
PubMed
Google Scholar
Yamamoto K, Sokabe T, Matsumoto T, Yoshimura K, Shibata M, Ohura N, et al: Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med. 2006, 12: 133-137. 10.1038/nm1338.
Article
CAS
PubMed
Google Scholar
Kim MJ, Turner CM, Hewitt R, Smith J, Bhangal G, Pusey CD, et al: Exaggerated renal fibrosis in P2X4 receptor-deficient mice following unilateral ureteric obstruction. Nephrol Dial Transplant. 2014, 29: 1350-1361. 10.1093/ndt/gfu019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller DB, O’Callaghan JP: Neuroendocrine aspects of the response to stress. Metabolism. 2002, 51: 5-10. 10.1053/meta.2002.33184.
Article
CAS
PubMed
Google Scholar
Neel JV, Weder AB, Julius S: Type II diabetes, essential hypertension, and obesity as “syndromes of impaired genetic homeostasis”: the “thrifty genotype” hypothesis enters the 21st century. Perspect Biol Med. 1998, 42: 44-74. 10.1353/pbm.1998.0060.
Article
CAS
PubMed
Google Scholar
White WB: Cardiovascular effects of the cyclooxygenase inhibitors. Hypertension. 2007, 49: 408-418. 10.1161/01.HYP.0000258106.74139.25.
Article
CAS
PubMed
Google Scholar
Touyz RM: Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance?. Hypertension. 2004, 44: 248-252. 10.1161/01.HYP.0000138070.47616.9d.
Article
CAS
PubMed
Google Scholar
de Waart DR, Paulusma CC, Kunne C, Oude Elferink RP: Multidrug resistance associated protein 2 mediates transport of prostaglandin E2. Liver Int. 2006, 26: 362-368. 10.1111/j.1478-3231.2005.01234.x.
Article
CAS
PubMed
Google Scholar
van Rodijnen WF, Korstjens IJ, Legerstee N, Ter Wee PM, Tangelder GJ: Direct vasoconstrictor effect of prostaglandin E2 on renal interlobular arteries: role of the EP3 receptor. Am J Physiol Renal Physiol. 2007, 292: F1094-1101. 10.1152/ajprenal.00351.2005.
Article
CAS
PubMed
Google Scholar
Grisk O, Steinbach AC, Ciecholewski S, Schluter T, Kloting I, Schmidt H, et al: Multidrug resistance-related protein 2 genotype of the donor affects kidney graft function. Pharmacogenet Genomics. 2009, 19: 276-288. 10.1097/FPC.0b013e328328d4e9.
Article
CAS
PubMed
Google Scholar
Jung GS, Kim MK, Jung YA, Kim HS, Park IS, Min BH, et al: Clusterin attenuates the development of renal fibrosis. J Am Soc Nephrol. 2012, 23: 73-85. 10.1681/ASN.2011010048.
Article
CAS
PubMed
Google Scholar
Zhou W, Guan Q, Kwan CC, Chen H, Gleave ME, Nguan CY, et al: Loss of clusterin expression worsens renal ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2010, 298: F568-578. 10.1152/ajprenal.00399.2009.
Article
CAS
PubMed
Google Scholar
Lelongt B, Legallicier B, Piedagnel R, Ronco PM: Do matrix metalloproteinases MMP-2 and MMP-9 (gelatinases) play a role in renal development, physiology and glomerular diseases?. Curr Opin Nephrol Hypertens. 2001, 10: 7-12. 10.1097/00041552-200101000-00002.
Article
CAS
PubMed
Google Scholar
Fernandez D, Larrucea S, Nowakowski A, Pericacho M, Parrilla R, Ayuso MS: Release of podocalyxin into the extracellular space. Role of metalloproteinases. Biochim Biophys Acta. 1813, 2011: 1504-1510.
Google Scholar
Luttun A, Lutgens E, Manderveld A, Maris K, Collen D, Carmeliet P, et al: Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth. Circulation. 2004, 109: 1408-1414. 10.1161/01.CIR.0000121728.14930.DE.
Article
CAS
PubMed
Google Scholar
Fitzsimmons PJ, Forough R, Lawrence ME, Gantt DS, Rajab MH, Kim H, et al: Urinary levels of matrix metalloproteinase 9 and 2 and tissue inhibitor of matrix metalloproteinase in patients with coronary artery disease. Atherosclerosis. 2007, 194: 196-203. 10.1016/j.atherosclerosis.2006.07.027.
Article
CAS
PubMed
Google Scholar
Recalcati S, Tacchini L, Alberghini A, Conte D, Cairo G: Oxidative stress-mediated down-regulation of rat hydroxyacid oxidase 1, a liver-specific peroxisomal enzyme. Hepatology. 2003, 38: 1159-1166. 10.1053/jhep.2003.50417.
Article
CAS
PubMed
Google Scholar
Campbell-Lloyd AJ, Mundy J, Deva R, Lampe G, Hawley C, Boyle G, et al: Is alpha-B crystallin an independent marker for prognosis in lung cancer?. Heart Lung Circ. 2013, 22: 759-766. 10.1016/j.hlc.2013.01.014.
Article
PubMed
Google Scholar
Nishiyama K, Konishi A, Nishio C, Araki-Yoshida K, Hatanaka H, Kojima M, et al: Expression of cystatin C prevents oxidative stress-induced death in PC12 cells. Brain Res Bull. 2005, 67: 94-99. 10.1016/j.brainresbull.2005.05.020.
Article
CAS
PubMed
Google Scholar
Hall JE, Louis K: Dahl Memorial Lecture. Renal and cardiovascular mechanisms of hypertension in obesity. Hypertension. 1994, 23: 381-394. 10.1161/01.HYP.23.3.381.
Article
CAS
PubMed
Google Scholar
Strazzullo P, Galletti F, Barba G: Altered renal handling of sodium in human hypertension: short review of the evidence. Hypertension. 2003, 41: 1000-1005. 10.1161/01.HYP.0000066844.63035.3A.
Article
CAS
PubMed
Google Scholar
Levi M, van der Poll T, Buller HR: Bidirectional relation between inflammation and coagulation. Circulation. 2004, 109: 2698-2704. 10.1161/01.CIR.0000131660.51520.9A.
Article
PubMed
Google Scholar
Hoffmann D, Bijol V, Krishnamoorthy A, Gonzalez VR, Frendl G, Zhang Q, et al: Fibrinogen excretion in the urine and immunoreactivity in the kidney serves as a translational biomarker for acute kidney injury. Am J Pathol. 2012, 181: 818-828. 10.1016/j.ajpath.2012.06.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yanada M, Kojima T, Ishiguro K, Nakayama Y, Yamamoto K, Matsushita T, et al: Impact of antithrombin deficiency in thrombogenesis: lipopolysaccharide and stress-induced thrombus formation in heterozygous antithrombin-deficient mice. Blood. 2002, 99: 2455-2458. 10.1182/blood.V99.7.2455.
Article
CAS
PubMed
Google Scholar
Jaffa AA, Durazo-Arvizu R, Zheng D, Lackland DT, Srikanth S, Garvey WT, et al: Plasma prekallikrein: a risk marker for hypertension and nephropathy in type 1 diabetes. Diabetes. 2003, 52: 1215-1221. 10.2337/diabetes.52.5.1215.
Article
CAS
PubMed
Google Scholar
Jezova D, Kristova V, Slamova J, Mlynarik M, Pirnik Z, Kiss A, et al: Stress-induced rise in endothelaemia, von Willebrand factor and hypothalamic-pituitary-adrenocortical axis activation is reduced by pretreatment with pentoxifylline. J Physiol Pharmacol. 2003, 54: 329-338.
CAS
PubMed
Google Scholar
Purcell ES, Gattone VH: Immune system of the spontaneously hypertensive rat. I. Sympathetic innervation. Exp Neurol. 1992, 117: 44-50. 10.1016/0014-4886(92)90109-4.
Article
CAS
PubMed
Google Scholar
Fu ML: Do immune system changes have a role in hypertension?. J Hypertens. 1995, 13: 1259-1265. 10.1097/00004872-199511000-00007.
Article
CAS
PubMed
Google Scholar
Harrison DG, Vinh A, Lob H, Madhur MS: Role of the adaptive immune system in hypertension. Curr Opin Pharmacol. 2010, 10: 203-207. 10.1016/j.coph.2010.01.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parham P: MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005, 5: 201-214. 10.1038/nri1570.
Article
CAS
PubMed
Google Scholar
Nepom GT, Erlich H: MHC class-II molecules and autoimmunity. Annu Rev Immunol. 1991, 9: 493-525. 10.1146/annurev.iy.09.040191.002425.
Article
CAS
PubMed
Google Scholar
Trott DW, Harrison DG: The immune system in hypertension. Adv Physiol Educ. 2014, 38: 20-24. 10.1152/advan.00063.2013.
Article
PubMed
PubMed Central
Google Scholar
Vaziri ND, Wang XQ, Oveisi F, Rad B: Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension. 2000, 36: 142-146. 10.1161/01.HYP.36.1.142.
Article
CAS
PubMed
Google Scholar
Pigeolet E, Remacle J: Susceptibility of glutathione peroxidase to proteolysis after oxidative alteration by peroxides and hydroxyl radicals. Free Radic Biol Med. 1991, 11: 191-195. 10.1016/0891-5849(91)90171-X.
Article
CAS
PubMed
Google Scholar
Hayes JD, Flanagan JU, Jowsey IR: Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005, 45: 51-88. 10.1146/annurev.pharmtox.45.120403.095857.
Article
CAS
PubMed
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14: R36-10.1186/gb-2013-14-4-r36.
Article
PubMed
PubMed Central
Google Scholar
Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L: Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013, 31: 46-53. 10.1038/nbt.2450.
Article
CAS
PubMed
Google Scholar
Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009, 4: 44-57. 10.1038/nprot.2008.211.
Article
CAS
Google Scholar
Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37: 1-13. 10.1093/nar/gkn923.
Article
Google Scholar
Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, Tan K, et al: An atlas of combinatorial transcriptional regulation in mouse and man. Cell. 2010, 140: 744-752. 10.1016/j.cell.2010.01.044.
Article
CAS
PubMed
Google Scholar
Ginzinger DG: Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol. 2002, 30: 503-512. 10.1016/S0301-472X(02)00806-8.
Article
CAS
PubMed
Google Scholar