Hetzer H, Hankins O, King J, Zeller J. Relationship between certain body measurements and carcass characteristics in swine. J Anim Sci. 1950;9(1):37–47.
Google Scholar
Hetzer H, Miller R. Correlated responses of various body measurements in swine selected for high and low fatness. J Anim Sci. 1972;35(4):743–51.
Google Scholar
Wood CM: Don't ignore feet and leg soundness in pigs. Virginia Cooperative Extension. Jun. 2001. (http://www.sites.ext.vt.edu/newsletter-archive/livestock/aps-01_06/aps-0375.html).
Madden AM, Tsikoura T, Stott DJ. The estimation of body height from ulna length in healthy adults from different ethnic groups. J Hum Nutr Diet. 2012;25(2):121–8.
Article
CAS
PubMed
Google Scholar
Neyestani TR, Dad-Khah M, Haidari H, Zowghi T, Maddah M, Nematy M, et al. Determination of the actual height predictors in Iranian healthy children. Acta Med Iran. 2011;49(3):173–8.
PubMed
Google Scholar
Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46(11):1173–86.
Article
CAS
PubMed Central
PubMed
Google Scholar
Visscher PM, Medland SE, Ferreira MA, Morley KI, Zhu G, Cornes BK, et al. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet. 2006;2(3), e41.
Article
PubMed Central
PubMed
Google Scholar
Andersson-Eklund L, Uhlhorn H, Lundeheim N, Dalin G, Andersson L. Mapping quantitative trait loci for principal components of bone measurements and osteochondrosis scores in a wild boar × Large White intercross. Genet Res. 2000;75(02):223–30.
Article
CAS
PubMed
Google Scholar
Mao H, Guo Y, Yang G, Yang B, Ren J, Liu S, et al. A genome-wide scan for quantitative trait loci affecting limb bone lengths and areal bone mineral density of the distal femur in a White Duroc x Erhualian F2 population. BMC Genet. 2008;9:63.
Article
PubMed Central
PubMed
Google Scholar
Zhang LC, Li N, Liu X, Liang J, Yan H, Zhao KB, et al. A genome-wide association study of limb bone length using a Large White x Minzhu intercross population. Genet Sel Evol. 2014;46(1):56.
Article
PubMed Central
PubMed
Google Scholar
Ramos AM, Crooijmans RP, Affara NA, Amaral AJ, Archibald AL, Beever JE, et al. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One. 2009;4(8), e6524.
Article
PubMed Central
PubMed
Google Scholar
Kemper KE, Daetwyler HD, Visscher PM, Goddard ME. Comparing linkage and association analyses in sheep points to a better way of doing GWAS. Genet Res. 2012;94(4):191–203.
Article
CAS
Google Scholar
Evangelou E, Ioannidis JP. Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet. 2013;14(6):379–89.
Article
CAS
PubMed
Google Scholar
Guo YM, Lee GJ, Archibald AL, Haley CS. Quantitative trait loci for production traits in pigs: a combined analysis of two Meishan x Large White populations. Anim Genet. 2008;39(5):486–95.
Article
PubMed
Google Scholar
Guo Y, Zhang X, Ren J, Ai H, Ma J, Huang L. A joint genomewide association analysis of pig leg weakness and its related traits in an F2 population and a Sutai population. J Anim Sci. 2013;91(9):4060–8.
Article
CAS
PubMed
Google Scholar
Yang B, Zhang W, Zhang Z, Fan Y, Xie X, Ai H, et al. Genome-wide association analyses for fatty acid composition in porcine muscle and abdominal fat tissues. PLoS One. 2013;8(6), e65554.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ai H, Xiao S, Zhang Z, Yang B, Li L, Guo Y, et al. Three novel quantitative trait loci for skin thickness in swine identified by linkage and genome-wide association studies. Anim Genet. 2014;45(4):524–33.
Article
CAS
PubMed
Google Scholar
Guo YM, Zhang ZY, Ma JW, Ai HS, Ren J, Huang LS: A genome-wide association study of feed efficiency and feeding behaviors at two fattening stages in a White Duroc × Erhuanlian F2 population. J Animal Sci 2015:doi:10.2527/jas2015-8655.
Qiao RM, Gao J, Zhang ZY, Lin L, Xie XH, Fan Y, et al. Genome-wide association analyses reveal significant loci and strong candidate genes for growth and fatness traits in two pig populations. Genet Sel Evol. 2015;47:17.
Article
PubMed Central
PubMed
Google Scholar
Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467(7317):832–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hendriks AE, Brown MR, Boot AM, Oostra BA, Drop SL, Parks JS. Genetic variation in candidate genes like the HMGA2 gene in the extremely tall. Horm Res Paediatr. 2011;76(5):307–13.
Article
CAS
PubMed
Google Scholar
Ma J, Iannuccelli N, Duan Y, Huang W, Guo B, Riquet J, et al. Recombinational landscape of porcine X chromosome and individual variation in female meiotic recombination associated with haplotypes of Chinese pigs. BMC Genomics. 2010;11:159.
Article
PubMed Central
PubMed
Google Scholar
Rubin CJ, Megens HJ, Martinez Barrio A, Maqbool K, Sayyab S, Schwochow D, et al. Strong signatures of selection in the domestic pig genome. Proc Natl Acad Sci U S A. 2012;109(48):19529–36.
Article
CAS
PubMed Central
PubMed
Google Scholar
Karim L, Takeda H, Lin L, Druet T, Arias JA, Baurain D, et al. Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nat Genet. 2011;43(5):405–13.
Article
CAS
PubMed
Google Scholar
Kim JJ, Lee HI, Park T, Kim K, Lee JE, Cho NH, et al. Identification of 15 loci influencing height in a Korean population. J Hum Genet. 2010;55(1):27–31.
Article
PubMed
Google Scholar
Guo Y, Mao H, Ren J, Yan X, Duan Y, Yang G, et al. A linkage map of the porcine genome from a large-scale White Duroc x Erhualian resource population and evaluation of factors affecting recombination rates. Anim Genet. 2009;40(1):47–52.
Article
PubMed
Google Scholar
Visscher PM, Hill WG, Wray NR. Heritability in the genomics era--concepts and misconceptions. Nat Rev Genet. 2008;9(4):255–66.
Article
CAS
PubMed
Google Scholar
Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2005;38(2):203–8.
Article
PubMed
Google Scholar
Amin N, van Duijn CM, Aulchenko YS. A genomic background based method for association analysis in related individuals. PLoS One. 2007;2(12), e1274.
Article
PubMed Central
PubMed
Google Scholar
Astle W, Balding DJ. Population structure and cryptic relatedness in genetic association studies. Statistical Science. 2009;24(4):451–71.
Article
Google Scholar
Aulchenko YS, Ripke S, Isaacs A, Van Duijn CM. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007;23(10):1294–6.
Article
CAS
PubMed
Google Scholar
Chen WM, Abecasis GR. Family-based association tests for genomewide association scans. Am J Hum Genet. 2007;81(5):913–26.
Article
CAS
PubMed Central
PubMed
Google Scholar
Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55(4):997–1004.
Article
CAS
PubMed
Google Scholar
Zheng G, Freidlin B, Li Z, Gastwirth JL. Genomic control for association studies under various genetic models. Biometrics. 2005;61(1):186–92.
Article
PubMed
Google Scholar
Yates F, Cochran WG. The analysis of groups of experiments. J Agric Sci. 1938;28:556–80.
Article
Google Scholar
Green P, Falls K, Crooks S. Cri-map Version 2.4. In: Washington University School of Medicine, St. Louis. 1994.
Google Scholar
Sobel E, Lange K. Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet. 1996;58(6):1323–37.
CAS
PubMed Central
PubMed
Google Scholar
Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–5.
Article
CAS
PubMed
Google Scholar