Von Uexkuell HR, Mutert E. Global extent, development and economic impact of acid soils. Plant Soil. 1995;171:1–15.
Article
Google Scholar
Wang JP, Raman H, Zhang GP, Mendham N, Zhou MX. Aluminium tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics and screening methods. J Zhejiang Univ Sci B. 2006;7:769–87.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bian M, Zhou M, Sun D, Li C. Molecular approaches unravel the mechanism of acid soil tolerance in plants. The Crop J. 2013;1:91–104.
Article
Google Scholar
Mattiello L, Kirst M, da Silva FR, Jorge RA, Menossi M. Transcriptional profile of maize roots under acid soil growth. BMC Plant Biol. 2010;10:196.
Article
PubMed Central
PubMed
Google Scholar
Hoekenga OA, Vision TJ, Shaff JE, Monforte AJ, Lee GP, Howell SH, et al. Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta X Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiol. 2003;132:936–48.
Article
CAS
PubMed Central
PubMed
Google Scholar
Inostroza-Blancheteau C, Aquea F, Reyes-Diaz M, Alberdi M, Arce-Johnson P. Identification of aluminum-regulated genes by cDNA-AFLP analysis of roots in two contrasting genotypes of highbush blueberry (Vaccinium corymbosum L.). Mol Biotechnol. 2011;49:32–41.
Article
CAS
PubMed
Google Scholar
Eticha D, Zahn M, Bremer M, Yang Z, Rangel AF, Rao IM, et al. Transcriptomic analysis reveals differential gene expression in response to aluminium in common bean (Phaseolus vulgaris) genotypes. Ann Bot. 2010;105:1119–28.
Article
CAS
PubMed Central
PubMed
Google Scholar
Maron LG, Kirst M, Mao C, Milner MJ, Menossi M, Kochian LV. Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytol. 2008;179:116–28.
Article
CAS
PubMed
Google Scholar
Ezaki B, Gardner RC, Ezaki Y, Matsumoto H. Expression of aluminum-induced genes in transgenic arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol. 2000;122:657–66.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ma JF, Ryan PR, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 2001;6:273–8.
Article
CAS
PubMed
Google Scholar
Singh D, Chauhan SK. Organic acids of crop plants in aluminium detoxification. Curr Sci. 2011;100:1509–15.
CAS
Google Scholar
Kochian LV, Hoekenga OA, Pineros MA. How do crop plants tolerate acid soils? - Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol. 2004;55:459–93.
Article
CAS
PubMed
Google Scholar
Yang L-T, Qi Y-P, Jiang H-X, Chen L-S. Roles of organic acid anion secretion in aluminium tolerance of higher plants. BioMed Res Int. 2012;2013:16.
Google Scholar
Foy CD, Chaney RL, White MC. The physiology of metal toxicity in plants. Annu Rev Plant Physiol. 1978;29:511–66.
Article
CAS
Google Scholar
Zhao Z, Ma JF, Sato K, Takeda K. Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Planta. 2003;217:794–800.
Article
CAS
PubMed
Google Scholar
StøLen O, Andersen S. Inheritance of tolerance to low soil pH in barley. Hereditas. 1978;88:101–5.
Article
Google Scholar
Minella E, Sorrells ME. Inheritance and chromosome location of Alp, a gene controlling aluminum tolerance in ‘Dayton’ barley. Plant Breed. 1997;116:465–9.
Article
CAS
Google Scholar
Raman H, Moroni S, Raman, R, Karakousis A, Read B, Sato K, et. al. A Genomic Region Associated with Aluminium Tolerance in Barley. Proceedings of the 10th Australian Barley Technical Symposium. http://www.regional.org.au/au/abts/2001/t3/raman.htm. 2001.
Raman H, Moroni J, Sato K, Read B, Scott B. Identification of AFLP and microsatellite markers linked with an aluminium tolerance gene in barley (Hordeum vulgare L.). Theor Appl Genet. 2002;105:458–64.
Article
CAS
PubMed
Google Scholar
Ma JF, Nagao S, Sato K, Ito H, Furukawa J, Takeda K. Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. J Exp Bot. 2004;55:1335–41.
Article
CAS
PubMed
Google Scholar
Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, et al. An aluminum-activated citrate transporter in barley. Plant Cell Physiol. 2007;48:1081–91.
Article
CAS
PubMed
Google Scholar
Wang J, Raman H, Zhou M, Ryan P, Delhaize E, Hebb D, et al. High-resolution mapping of the Alp locus and identifcation of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet. 2007;115:265–76.
Article
CAS
PubMed
Google Scholar
Varshney RK, Marcel TC, Ramsay L, Russell J, Roder MS, Stein N, et al. A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet. 2007;114:1091–103.
Article
CAS
PubMed
Google Scholar
Bian M, Waters I, Broughton S, Zhang X-Q, Zhou M, Lance R, et al. Development of gene-specific markers for acid soil/aluminium tolerance in barley (Hordeum vulgare L.). Mol Breed. 2013;32:155–64.
Fujii M, Yokosho K, Yamaji N, Saisho D, Yamane M, Takahashi H, et al. Acquisition of aluminium tolerance by modification of a single gene in barley. Nat Commun. 2012;3:713.
Article
PubMed Central
PubMed
Google Scholar
Lidon FC, Barreiro MG, Ramalho JC, Lauriano JA. Effects of aluminum toxicity on nutrient accumulation in maize shoots: Implications on photosynthesis. J Plant Nutr. 1999;22:397–416.
Article
CAS
Google Scholar
Pan J-w, Zhu M-y. Chen H. Aluminum-induced cell death in root-tip cells of barley. Environ Exp Bot. 2001;46:71–9.
Article
CAS
PubMed
Google Scholar
Kidd PS, Proctor J. Why plants grow poorly on very acid soils: are ecologists missing the obvious? J Exp Bot. 2001;52:791–9.
Article
CAS
PubMed
Google Scholar
Nguyen VT, Nguyen BD, Sarkarung S, Martinez C, Paterson AH, Nguyen HT. Mapping of genes controlling aluminum tolerance in rice: Comparison of different genetic backgrounds. Mol Genet Genomics. 2002;267:772–80.
Article
CAS
PubMed
Google Scholar
Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN, Nguyen HT. Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., into indica rice (Oryza sativa L.). Theor Appl Genet. 2003;106:583–93.
CAS
PubMed
Google Scholar
Famoso AN, Zhao K, Clark RT, Tung CW, Wright MH, Bustamante C, et al. Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet. 2011;7:e1002221.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ninamango-Cárdenas F, Teixeira Guimarães C, Martins P, Netto Parentoni S, Portilho Carneiro N, Lopes M, et al. Mapping QTLs for aluminum tolerance in maize. Euphytica. 2003;130:223–32.
Article
Google Scholar
Zhang XG, Jessop RS, Ellison F. Inheritance of root regrowth as an indicator of apparent aluminum tolerance in triticale. Euphytica. 1999;108:97–103.
Article
CAS
Google Scholar
Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, et al. A wheat gene encoding an aluminum-activated malate transporter. The Plant J. 2004;37:645–53.
Article
CAS
PubMed
Google Scholar
Singh D, Choudhary AK. Inheritance pattern of aluminum tolerance in pea. Plant Breed. 2010;129:688–92.
Article
CAS
Google Scholar
Singh D, Raje RS. Genetics of aluminium tolerance in chickpea (Cicer arietinum). Plant Breed. 2011;130:563–8.
Article
CAS
Google Scholar
Collins NC, Shirley NJ, Saeed M, Pallotta M, Gustafson JP. An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genet. 2008;179:669–82.
Article
CAS
Google Scholar
Navakode S, Weidner A, Varshney R, Lohwasser U, Scholz U, Börner A. A QTL analysis of aluminium tolerance in barley, using gene-based markers. Cereal Res Commun. 2009;37:531–40.
Article
CAS
Google Scholar
Li HB, Kilian A, Zhou MX, Wenzl P, Huttner E, Mendham N, et al. Construction of a high-density composite map and comparative mapping of segregation distortion regions in barley. Mol Genet Genomics. 2010;284:319–31.
Article
CAS
PubMed
Google Scholar
Raman H, Karakousis A, Moroni JS, Raman R, Read BJ, Garvin DF, et al. Development and allele diversity of microsatellite markers linked to the aluminium tolerance gene Alp in barley. Aust J Agric Res. 2003;54:1315–21.
Article
CAS
Google Scholar
Silva-Navas J, Benito C, Téllez-Robledo B, Abd El-Moneim D, Gallego F. The ScAACT1 gene at the Qalt5 locus as a candidate for increased aluminum tolerance in rye (Secale cereale L.). Mol Breed. 2011:1–12.
Kobayashi Y, Hoekenga OA, Itoh H, Nakashima M, Saito S, Shaff JE, et al. Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in arabidopsis. Plant Physiol. 2007;145:843–52.
Article
CAS
PubMed Central
PubMed
Google Scholar
Maron LG, Pineros MA, Guimaraes CT, Magalhaes JV, Pleiman JK, Mao C, et al. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J. 2010;61:728–40.
Article
CAS
PubMed
Google Scholar
Sasaki T, Ryan PR, Delhaize E, Hebb DM, Ogihara Y, Kawaura K, et al. Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol. 2006;47:1343–54.
Article
CAS
PubMed
Google Scholar
Maron LG, Guimaraes CT, Kirst M, Albert PS, Birchler JA, Bradbury PJ, et al. Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proc Natl Acad Sci. 2013;110:5241–6.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schaefer C, Rost B. Predict impact of single amino acid change upon protein structure. BMC Genomics. 2012;13.
Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One. 2012;7.
Doyle MR, Amasino RM. A single amino acid change in the enhancer of zeste ortholog CURLY LEAF results in vernalization-independent, rapid flowering in Arabidopsis. Plant Physiol. 2009;151:1688–97.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D, Takeda K, et al. A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol. 2003;133:1209–19.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yang XQ, Westcott S, Gong X, Evans E, Zhang XQ, Lance RCM, et al. Amino acid substitutions of the limit dextrinase gene in barley are associated with enzyme thermostability. Mol Breed. 2009;23:61–74.
Article
CAS
Google Scholar
Maroof MAS, Biyashev RM, Yang GP, Zhang Q, Allard RW. Extraordinarily polymorphic microsatellite DNA in barley - species-diversity, chromosomal locations, and population-dynamics. Proc Natl Acad Sci USA. 1994;91:5466–70.
Article
CAS
Google Scholar
Becker J, Heun M. Mapping of digested and undigested random amplified microsatellite polymorphisms in barley. Genome. 1995;38:991–8.
Article
CAS
PubMed
Google Scholar
Liu ZW, Biyashev RM, Maroof MAS. Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor Appl Genet. 1996;93:869–76.
Article
CAS
PubMed
Google Scholar
Struss D, Plieske J. The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet. 1998;97:308–15.
Article
CAS
Google Scholar
Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics. 2000;156:847–54.
CAS
PubMed Central
PubMed
Google Scholar
Pillen K, Binder A, Kreuzkam B, Ramsay L, Waugh R, Forster J, et al. Mapping new EMBL-derived barley microsatellites and their use in differentiating German barley cultivars. Theor Appl Genet. 2000;101:652–60.
Article
CAS
Google Scholar
Ramsay L, Macaulay M, Ivanissevich SD, MacLean K, Cardle L, Fuller J, et al. A simple sequence repeat-based linkage map of barley. Genet. 2000;156:1997–2005.
CAS
Google Scholar
Li JZ, Sjakste TG, Roder MS, Ganal MW. Development and genetic mapping of 127 new microsatellite markers in barley. Theor Appl Genet. 2003;107:1021–7.
Article
CAS
PubMed
Google Scholar
Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet. 2003;106:411–22.
CAS
PubMed
Google Scholar
Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, et al. Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics. 2005;274:515–27.
Article
CAS
PubMed
Google Scholar
Savov A, Angelicheva D, Jordanova A, Eigel A, Kalaydjieva L. High percentage acrylamide gels improve resolution in Sscp analysis. Nucleic Acids Res. 1992;20:6741–2.
Article
CAS
PubMed Central
PubMed
Google Scholar
Martins-Lopes P, Zhang H, Koebner R. Detection of single nucleotide mutations in wheat using single strand conformation polymorphism gels. Plant Mol Biol Report. 2001;19:159–62.
Article
CAS
Google Scholar
Kosambi DD. The estimation of map distances from recombination values. Ann Hum Genet. 1943;12:172–5.
Google Scholar
Manly KF. A Macintosh program for storage and analysis of experimental genetic mapping data. Mamm Genome. 1993;4:303–13.
Article
CAS
PubMed
Google Scholar
Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genet. 2007;175:361–74.
Article
Google Scholar
Li H, Hearne S, Banziger M, Li Z, Wang J. Statistical properties of QTL linkage mapping in biparental genetic populations. Heredity. 2010;105:257–67.
Article
CAS
PubMed
Google Scholar