Physiological homeostasis is the process whereby a narrow range of phenotypes develops in the presence of wide variation in genotypes and environments. A classic example is the ability of homeothermic mammals to maintain a constant body temperature despite substantial genetic variation and fluctuating ambient air temperatures. The concept of physiological homeostasis bears some similarity to Waddington's notion of "canalization" [10] although this latter concept is usually applied to growth and developmental homeostasis.
That a breakdown in physiological homeostasis can result in either an increase or decrease in a phenotype — thus increasing the variance — is recognized in the operational definitions of many disorders. For example, among the Diagnostic and Statistical Manual of Mental Disorders (4th ed.) criteria for major depression are the following: a significant decrease or increase in appetite, insomnia or hypersomnia, psychomotor agitation or psychomotor retardation.
While the preponderance of genetic studies concentrate on the first moment of various phenotypes — and for medical reasons are usually interested in understanding deviantly high (or, rarely, deviantly low) phenotypes — it is reasonable to suppose that the magnitude of an individual's phenotypic variation is to some extent under genetic control [11]. Indeed, recently it has been shown that with respect to short-term (24-hour) variation among hypertensive patients, variability in blood pressure is positively related to organ damage and cardiovascular morbidity [12].
We used the rich longitudinal Framingham Heart Study data to study the genetics of long term variation in SBP. Our findings indicate that there is moderate familial resemblance for the magnitude of the deviation of a person's SBP from his or her unique age-related trend line. At least three caveats need to be mentioned. First, we restricted our Cohort 1 analysis to individuals with 10 or more measurements. Because this cohort was relatively small, we chose to include all subjects who met the above criterion, regardless of whether they were under treatment for hypertension. Subsequent to the Genetic Analysis Workshop 13, however, we carried out an analysis to determine if there exists a relationship between medication usage and AVGRES. We quantified medication usage as the proportion of SBP assessments where the subject was reported to be medicated. Unexpectedly, there is a strong positive correlation for both cohort 1 (r = 0.51) and Cohort 2 (r = 0.29) in the Framingham Heart Study. This previously unrecognized relationship between the use of hypertension medication and AVGRES is likely to have confounded our linkage analysis in an unknown fashion. Second, we did not adjust the data for body mass index (BMI)-a covariate known to show familial resemblance and to affect SBP. Since our phenotype was defined as the average residual from each subject's unique regression line it is unclear what, if any, effect the failure to adjust for BMI had on our results. Third, we did not test whether curvilinear regression would have provided an improved fit compared to simple linear regression. This decision was based on two considerations. First, if for some of the subjects, a quadratic or cubic function were found to fit significantly better than the linear component, its use in a subset of the data would have created a heterogeneous definition of the phenotype. Second, we were aware that the maximum number of available SBP measures on the Cohort 2 subjects was five, and it seemed frivolous to fit a high order function to such meager data.
For the linkage analysis, we chose to analyze the sibship data with two different methods. Although the NP and the EM-HE methods are similar, as are all linkage methods, they are not identical. For the data we analyzed, the correlation between the NP and EM-HE scores were 0.72 and 0.69 for Cohorts 1 and 2, respectively. Inspection of the quantile-quantile (QQ) plots (Fig. 1) reveals that the NP statistic is more conservative than the EM-HE statistic. Indeed, 11.6 % and 11.3% of the markers in Cohorts 1 and 2, respectively, are significant at the 0.05 level with EM-HE, whereas 6.0% and 7.5% are significant with the NP statistic.
We used the linkage analysis on Cohort 1 to develop hypothesis that could be tested in Cohort 2. Two genomic regions were "replicated" in Cohort 2 using the same statistical method (D5S1456 and D11S2359). An additional two signals were found to be nominally significant by EM-HE in Cohort 1 and "replicated" with NP in Cohort 2. Three of these four signals remained nominally significant when extended pedigrees were analyzed.