Russo V, Nanni-Costa L: Suitability of pig meat for salting and the production of quality processed products. Pigs News Inf. 1995, 16: 17N-26N.
Google Scholar
Sellier P: Genetics of meat and carcass traits. The genetics of the pig. Edited by: Rothschild MF, Ruvinsky A. 1998, Oxon (UK): CAB International, 463-510.
Google Scholar
Nguyen NH, McPhee CP, Trout GR: Responses in carcass lean pH at 24 hours post-mortem in lines of Large White pigs selected for growth rate on a fixed ration over a set time. Livest Sci. 2006, 100: 84-90. 10.1016/j.livprodsci.2005.07.005.
Article
Google Scholar
Rosendo A, Druet T, Péry C, Bidanel JP: Correlative responses for carcass and meat quality traits to selection for ovulation rate or prenatal survival in French Large White pigs. J Anim Sci. 2010, 88: 903-911. 10.2527/jas.2009-2326.
Article
CAS
PubMed
Google Scholar
Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler JE, O’Brien PJ, MacLennan DH: Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science. 1991, 253: 448-451. 10.1126/science.1862346.
Article
CAS
PubMed
Google Scholar
Milan D, Jeon JT, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard C, Paul S, Iannuccelli N, Rask L, Ronne H, Lundström K, Reinsch N, Gellin J, Kalm E, Roy PL, Chardon P, Andersson L: A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science. 2000, 288: 1248-1251. 10.1126/science.288.5469.1248.
Article
CAS
PubMed
Google Scholar
PigQTL database. http://www.animalgenome.org/cgi-bin/QTLdb/SS/index,
Hu Z-L, Reecy J: Animal QTLdb: beyond a repository. Mamm Genome. 2007, 18: 1-4. 10.1007/s00335-006-0105-8.
Article
PubMed
Google Scholar
Hu Z-L, Park CA, Fritz ER, Reecy JM: QTLdb: a comprehensive database tool building bridges between genotypes and phenotypes. Invited Lecture with full paper published electronically on the 9th World Congress on Genetics Applied to Livestock Production. 2010, Leipzig, Germany: Gesellschaft für Tierzuchtwissenschaften e. V. (German Society for Animal Science), 0017. ISBN 978-3-00-031608-1
Google Scholar
UniGene. http://www.ncbi.nlm.nih.gov/unigene,
Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan D, Megens HJ, Li S, Larkin DM, Kim H, Frantz LA, Caccamo M, Ahn H, Aken BL, Anselmo A, Anthon C, Auvil L, Badaoui B, Beattie CW, Bendixen C, Berman D, Blecha F, Blomberg J, Bolund L, Bosse M, Botti S, Bujie Z, et al: Analyses of pig genomes provide insight into porcine demography and evolution. Nature. 2012, 491: 393-398. 10.1038/nature11622.
Article
PubMed Central
CAS
PubMed
Google Scholar
ENSEMBL. http://www.ensembl.org/Sus_scrofa/Info/Annotation/#assembly,
Rohrer GA, Alexander LJ, Hu Z, Smith TP, Keele JW, Beattie CW: A comprehensive map of the porcine genome. Genome Res. 1996, 6: 371-391. 10.1101/gr.6.5.371.
Article
CAS
PubMed
Google Scholar
Park MH, Nishimura K, Zanelli CF, Valentini SR: Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids. 2010, 38: 491-500. 10.1007/s00726-009-0408-7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jao DL, Chen KY: Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. J Cell Biochem. 2006, 97: 583-598. 10.1002/jcb.20658.
Article
CAS
PubMed
Google Scholar
Wolff EC, Kang KR, Kim YS, Park MH: Posttranslational synthesis of hypusine: evolutionary progression and specificity of the hypusine modification. Amino Acids. 2007, 33: 341-350. 10.1007/s00726-007-0525-0.
Article
PubMed Central
CAS
PubMed
Google Scholar
NCBI MapViever. http://www.ncbi.nlm.nih.gov/projects/mapview/,
Su W-Y, Li J-T, Cui Y, Hong J, Du W, Wang Y-C, Lin Y-W, Xiong H, Wang J-L, Kong X, Gao Q-Y, Wei L-P, Fang J-Y: Bidirectional regulation between WDR83 and its natural antisense transcript DHPS in gastric cancer. Cell Res. 2012, 22: 1374-1389. 10.1038/cr.2012.57.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hopfer U, Hopfer H, Jablonski K, Stahl RA, Wolf G: The novel WD-repeat protein Morg1 acts as a molecular scaffold for hypoxia-inducible factor prolyl hydroxylase 3 (PHD3). J Biol Chem. 2006, 281: 8645-8655. 10.1074/jbc.M513751200.
Article
CAS
PubMed
Google Scholar
Boulahbel H, Durán RV, Gottlieb E: Prolyl hydroxylases as regulators of cell metabolism. Biochem Soc Trans. 2009, 37: 291-294. 10.1042/BST0370291.
Article
CAS
PubMed
Google Scholar
Zhang Y, Liu XS, Liu QR, Wei L: Genome-wide in silico identification and analysis of cis natural antisense transcripts (cis-NATs) in ten species. Nucleic Acids Res. 2006, 34: 3465-3475. 10.1093/nar/gkl473.
Article
PubMed Central
CAS
PubMed
Google Scholar
Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J, Suzuki H, Carninci P, Hayashizaki Y, Wells C, Frith M, Ravasi T, Pang KC, Hallinan J, Mattick J, Hume DA, Lipovich L, Batalov S, Engström PG, Mizuno Y, Faghihi MA, Sandelin A, Chalk AM, Mottagui-Tabar S, Liang Z, Lenhard B, Wahlestedt C, RIKEN Genome Exploration Research Group: Antisense transcription in the mammalian transcriptome. Science. 2005, 309: 1564-1566.
Article
PubMed
Google Scholar
Rossignol F, Vaché C, Clottes E: Natural antisense transcripts of hypoxia-inducible factor 1alpha are detected in different normal and tumour human tissues. Gene. 2002, 299: 135-140. 10.1016/S0378-1119(02)01049-1.
Article
CAS
PubMed
Google Scholar
Span PN, Rao JU, Oude Ophuis SBJ, Lenders JWM, Sweep FCGJ, Wesseling P, Kusters B, van Nederveen FH, de Krijger RR, Hermus ARMM, Timmers HJLM: Overexpression of the natural antisense hypoxia-inducible factor-1alpha transcript is associated with malignant pheochromocytoma/paraganglioma. Endocr Relat Cancer. 2011, 18: 323-331. 10.1530/ERC-10-0184.
Article
CAS
PubMed
Google Scholar
Gourley M, Williamson JS: Angiogenesis: new targets for the development of anticancer chemotherapies. Curr Pharm Des. 2000, 6: 417-439. 10.2174/1381612003400867.
Article
CAS
PubMed
Google Scholar
Griffioen AW, Molema G: Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev. 2000, 52: 237-268.
CAS
PubMed
Google Scholar
Graham RM, Frazier DP, Thompson JW, Haliko S, Li H, Wasserlauf BJ, Spiga M-G, Bishopric NH, Webster KA: A unique pathway of cardiac myocyte death caused by hypoxia-acidosis. J Exp Biol. 2004, 207: 3189-3200. 10.1242/jeb.01109.
Article
CAS
PubMed
Google Scholar
Wagner PD: Skeletal muscle angiogenesis. A possible role for hypoxia. Adv Exp Med Biol. 2001, 502: 21-38. 10.1007/978-1-4757-3401-0_4.
Article
CAS
PubMed
Google Scholar
National Association of Pig Breeders. (Associazione Nazionale Allevatori Suini). http://www.anas.it,
Fontanesi L, Davoli R, Nanni Costa L, Scotti E, Russo V: Study of candidate genes for glycolytic potential of porcine skeletal muscle: identification and analysis of mutations, linkage and physical mapping and association with meat quality traits in pigs. Cytogenet Genome Res. 2003, 102: 145-151. 10.1159/000075740.
Article
CAS
PubMed
Google Scholar
Sambrook J, Fritschi EF, Maniatis T: Molecular cloning: a laboratory manual. 1989, New York: Cold Spring Harbor Laboratory Press
Google Scholar
Ponsuksili S, Chomdej S, Murani E, Bläser U, Schreinemachers H-J, Schellander K, Wimmers K: SNP detection and genetic mapping of porcine genes encoding enzymes in hepatic metabolic pathways and evaluation of linkage with carcass traits. Anim Genet. 2005, 36: 477-483.
CAS
PubMed
Google Scholar
Liu G, Jennen DGJ, Tholen E, Juengst H, Kleinwächter T, Hölker M, Tesfaye D, Un G, Schreinemachers H-J, Murani E, Ponsuksili S, Kim J-J, Schellander K, Wimmers K: A genome scan reveals QTL for growth, fatness, leanness and meat quality in a Duroc-Pietrain resource population. Anim Genet. 2007, 38: 241-252. 10.1111/j.1365-2052.2007.01592.x.
Article
CAS
PubMed
Google Scholar
Lee SS, Chen Y, Moran C, Cepica S, Reiner G, Bartenschlager H, Moser G, Geldermann H: Linkage and QTL mapping for Sus scrofa chromosome 2. J Anim Breed Genet. 2003, 120: 11-19. 10.1046/j.0931-2668.2003.00419.x.
Article
CAS
Google Scholar
de Koning DJ, Pong-Wong R, Varona L, Evans GJ, Giuffra E, Sanchez A, Plastow G, Noguera JL, Andersson L, Haley CS: Full pedigree quantitative trait locus analysis in commercial pigs using variance components. J Anim Sci. 2003, 81: 2155-2163.
CAS
PubMed
Google Scholar
Rohrer GA, Thallman RM, Shackelford S, Wheeler T, Koohmaraie M: A genome scan for loci affecting pork quality in a Duroc-Landrace F population. Anim Genet. 2006, 37: 17-27. 10.1111/j.1365-2052.2005.01368.x.
Article
CAS
PubMed
Google Scholar
Jennen DGJ, Brings AD, Liu G, Jüngst H, Tholen E, Jonas E, Tesfaye D, Schellander K, Phatsara C: Genetic aspects concerning drip loss and water-holding capacity of porcine meat. J Anim Breed Genet. 2007, 124 (Suppl 1): 2-11.
Article
PubMed
Google Scholar
Duan YY, Ma JW, Yuan F, Huang LB, Yang KX, Xie JP, Wu GZ, Huang LS: Genome-wide identification of quantitative trait loci for pork temperature, pH decline, and glycolytic potential in a large-scale White Duroc x Chinese Erhualian resource population. J Anim Sci. 2009, 87: 9-16.
Article
CAS
PubMed
Google Scholar
Heuven HCM, van Wijk RHJ, Dibbits B, van Kampen TA, Knol EF, Bovenhuis H: Mapping carcass and meat quality QTL on Sus Scrofa chromosome 2 in commercial finishing pigs. Genet Sel Evol. 2009, 41: 4-10.1186/1297-9686-41-4.
Article
PubMed Central
PubMed
Google Scholar
Beeckmann P, Schröffel J, Moser G, Bartenschlager H, Reiner G, Geldermann H: Linkage and QTL mapping for Sus scrofa chromosome 3. J Anim Breed Genet. 2003, 120: 20-27. 10.1046/j.0931-2668.2003.00420.x.
Article
CAS
Google Scholar
Ovilo C, Clop A, Noguera JL, Oliver MA, Barragán C, Rodriguez C, Silió L, Toro MA, Coll A, Folch JM, Sánchez A, Babot D, Varona L, Pérez-Enciso M: Quantitative trait locus mapping for meat quality traits in an Iberian x Landrace F2 pig population. J Anim Sci. 2002, 80: 2801-2808.
CAS
PubMed
Google Scholar
Wimmers K, Murani E, Schellander K, Ponsuksili S: Combining QTL- and expression-analysis: identification of functional positional candidate genes for meat quality and carcass traits. Arch Tierz. 2005, 48: 23-31.
Google Scholar
Edwards DB, Ernst CW, Raney NE, Doumit ME, Hoge MD, Bates RO: Quantitative trait locus mapping in an F2 Duroc x Pietrain resource population: II. Carcass and meat quality traits. J Anim Sci. 2008, 86: 254-266.
Article
CAS
PubMed
Google Scholar
USDA-MARC linkage map. http://www.ncbi.nlm.nih.gov/projects/mapview/maps.cgi?TAXID=9823&MAPS=MARC,
BLASTN. http://blast.ncbi.nlm.nih.gov/,
Illumina GoldenGate Genotyping Assay system. http://www.illumina.com/technology/goldengate_genotyping_assay.ilmn,
CBM, Cluster in biomedicine, Trieste, Italy. http://www.cbm.fvg.it/,
Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ: High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem. 2003, 49: 853-860. 10.1373/49.6.853.
Article
CAS
PubMed
Google Scholar
Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E: Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem. 2004, 50: 1156-1164. 10.1373/clinchem.2004.032136.
Article
CAS
PubMed
Google Scholar
PLINK whole genome association analysis toolset. http://pngu.mgh.harvard.edu/~purcell/plink/,
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007, 81: 559-575. 10.1086/519795.
Article
PubMed Central
CAS
PubMed
Google Scholar