Boyer JS: Plant productivity and environment. Science. 1982, 218: 443-448. 10.1126/science.218.4571.443.
Article
CAS
PubMed
Google Scholar
Blum A: Plant Breeding for Water-limited Environments. 2011, New York: Springer
Book
Google Scholar
Pennisi E: The blue revolution, drop by drop, gene by gene. Science. 2008, 320: 171-173. 10.1126/science.320.5873.171.
Article
CAS
PubMed
Google Scholar
Schulte D, Close TJ, Graner A, Langridge P, Matsumoto T, Muehlbauer G, Sato K, Schulman AH, Waugh R, Wise RP: The international barley sequencing consortium - at the threshold of efficient access to the barley genome. Plant Physiol. 2009, 149: 142-147. 10.1104/pp.108.128967.
Article
PubMed Central
CAS
PubMed
Google Scholar
Champoux MC, Wang G, Sarkarung S, Mackill DJ, O’Toole JC, Huang N, McCouch SR: Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet. 1995, 90: 969-981.
Article
CAS
PubMed
Google Scholar
Teulat B, Borries C, This D: New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth-chamber under two water regimes. Theor Appl Genet. 2001, 103: 161-170. 10.1007/s001220000503.
Article
CAS
Google Scholar
Sanchez AC, Subudhi PK, Rosenow DT, Nguyen HT: Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol. 2002, 48: 713-726. 10.1023/A:1014894130270.
Article
CAS
PubMed
Google Scholar
Teulat B, Zoumarou-Wallia N, Rotter B, Ben Salem M, Bahri H, This D: QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor Appl Genet. 2003, 108: 181-188. 10.1007/s00122-003-1417-7.
Article
CAS
PubMed
Google Scholar
Talamé V, Sanguineti MC, Chiapparino E, Bahri H, Ben Salem M, Forster BP, Ellis RP, Rhouma S, Zoumarou W, Waugh R, Tuberosa R: Identification of Hordeum spontaneum QTL alleles improving field performance of barley grown under rainfed conditions. Ann Appl Biol. 2004, 144: 309-319. 10.1111/j.1744-7348.2004.tb00346.x.
Article
Google Scholar
Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, Stanca AM, Pecchioni N: Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet. 2006, 112: 445-454. 10.1007/s00122-005-0144-7.
Article
CAS
PubMed
Google Scholar
Quarrie SA, Quarrie SP, Radosevic R: Dissecting a wheat QTL for yield present in a range of environments: From the QTL to candidate genes. J Exp Bot. 2006, 11: 2627-2637.
Article
Google Scholar
Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, Ben Salem M, Bort J, DeAmbrogio E, del Moral LFG, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R: Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics. 2008, 178: 489-511. 10.1534/genetics.107.077297.
Article
PubMed Central
PubMed
Google Scholar
Mathews KL, Malosetti M, Chapman S, McIntyre L, Reynolds M, Shorter R, van Eeuwijk F: Multi-environment QTL mixed models for drought stress adaptation in wheat. Theor Appl Genet. 2008, 117: 1077-1091. 10.1007/s00122-008-0846-8.
Article
PubMed
Google Scholar
McKay JK, Richards JH, Nemali KS, Sen S, Mitchell-Olds T, Boles S, Stahl EA, Wayne T, Juenger TE: Genetics of drought adaptation in Arabidopsis thaliana II. QTL analysis of a new mapping population, Kas-1 x Tsu-1. Evolution. 2008, 62: 3014-3026. 10.1111/j.1558-5646.2008.00474.x.
Article
PubMed
Google Scholar
Messmer R, Fracheboud Y, Bänziger M, Vargas M, Ribaut JM SP: Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet. 2009, 119: 913-930. 10.1007/s00122-009-1099-x.
Article
PubMed
Google Scholar
El Soda M, Nadakuduti SS, Pillen K, Uptmoor R: Stability parameter and genotype mean estimates for drought stress effects on root and shoot growth of wild barley pre-introgression lines. Mol Breeding. 2010, 26: 583-593. 10.1007/s11032-010-9393-5.
Article
Google Scholar
Blum A: Plant Breeding for Stress Environments. 1988, Florida. USA: CRC. Inc
Google Scholar
Price AH, Townend J, Jones MP, Audebert A, Courtois B: Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Mol Biol. 2002, 48: 683-695. 10.1023/A:1014805625790.
Article
CAS
PubMed
Google Scholar
Clarke JM: Effect of leaf rolling on leaf water loss in Triticum ssp. Can J Plant Sci. 1986, 66: 885-891. 10.4141/cjps86-111.
Article
Google Scholar
Bartels D, Sunker R: Drought and salt tolerance in plants. Criti Rev Plant Sci. 2005, 24: 23-58. 10.1080/07352680590910410.
Article
CAS
Google Scholar
Bohnert HJ, Nelson DE, Jensen RG: Adaptations to environmental stresses. Plant Cell. 1995, 7: 1099-1111.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sleator RD, Hill C: Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev. 2002, 26: 49-71. 10.1111/j.1574-6976.2002.tb00598.x.
Article
CAS
PubMed
Google Scholar
Szabados L, Savouré A: Proline: a multifunctional amino acid. Trend Plant Sci. 2009, 15: 89-97.
Article
Google Scholar
Lehmann S, Funck D, Szabados L, Rentsch D: Proline metabolism and transport in plant development. Amino Acids. 2010, 39: 949-962. 10.1007/s00726-010-0525-3.
Article
CAS
PubMed
Google Scholar
Iyer S, Caplan A: Products of proline catabolism can induce osmotically regulated genes. Plant Physiol. 1998, 116: 203-211. 10.1104/pp.116.1.203.
Article
PubMed Central
CAS
Google Scholar
Mattioli R, Marchese D, D’Angeli S, Altamura M, Costantino P, Trovato M: Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Mol Biol. 2008, 66: 277-288. 10.1007/s11103-007-9269-1.
Article
CAS
PubMed
Google Scholar
Mattioli R, Falasca G, Sabatini S, Altamura MM, Costantino P, Trovato M: The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development. Physiol Plantarum. 2009, 137: 72-85. 10.1111/j.1399-3054.2009.01261.x.
Article
CAS
Google Scholar
Lansac AR, Sullivan CY, Johnson BE: Accumulation of free proline in sorghum (Sorghum bicolor) pollen. Can J Bot. 1996, 74: 40-45. 10.1139/b96-006.
Article
CAS
Google Scholar
Schmidt R, Stransky H, Koch W: The amino acid permease AAP8 is important for early seed development in Arabidopsis thaliana. Planta. 2007, 226: 805-813. 10.1007/s00425-007-0527-x.
Article
CAS
PubMed
Google Scholar
Singh TN, Aspinall D, Paleg LG: Proline accumulation and varietal adaptability to drought in barley: a potential metabolic measure of drought resistance. Nature New Biol. 1972, 236: 188-190.
Article
CAS
PubMed
Google Scholar
Hanson AD, Nelsen CE, Pedersen AR, Everson EH: Capacity for proline accumulation during water stress in barley and its implications for breeding for drought resistance. Crop Sci. 1979, 19: 489-493. 10.2135/cropsci1979.0011183X001900040015x.
Article
CAS
Google Scholar
Bates L, Waldren R, Teare I: Rapid determination of free proline for water stress studies. Plant & Soil. 1973, 39: 205-207. 10.1007/BF00018060.
Article
CAS
Google Scholar
de Datta SK, Malabuyouc JA, Aragon EL: A field screening technique for evaluating rice germplasm for drought tolerance during the vegetative stage. Field Crop Res. 1998, 19: 123-134.
Article
Google Scholar
von Korff M, Wang H, Léon J, Pillen K: AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet. 2006, 112: 1221-1231. 10.1007/s00122-006-0223-4.
Article
CAS
PubMed
Google Scholar
Tanksley SD, Nelson JC: Advanced backcross QTL analysis: a method for simultaneous discovery and transfer of valuable QTL from unadapted germplasm into elite breeding lines. Theor Appl Genet. 1996, 92: 191-203. 10.1007/BF00223376.
Article
CAS
PubMed
Google Scholar
Mather K, Jinks JL: Biometrical Genetics. 1982, London: Chapman and Hall, 3
Book
Google Scholar
Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK: An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica. 2005, 142: 169-196. 10.1007/s10681-005-1681-5.
Article
CAS
Google Scholar
Chiang H, Dandekar AM: Regulation of proline accumulation in Arabidopsis thaliana (L.) Heynh during development and in response to desiccation. Plant Cell Environ. 1995, 18: 1280-1290. 10.1111/j.1365-3040.1995.tb00187.x.
Article
CAS
Google Scholar
Fujita T, Maggio A, Garcfa-Rfos M, Bressan RA, Csonka LN: Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for Ll',-pyrroline-5-carboxylate synthetase from tomato. Plant Physiol. 1998, 118: 661-674. 10.1104/pp.118.2.661.
Article
PubMed Central
CAS
PubMed
Google Scholar
Armengaud P, Thiery L, Buhot N, Grenier-de March G, Savoure A: Transcriptional regulation of proline biosynthesis in Medicc/go Iruncalu[a reveals developmental and environmental specific features. Physiol Plant. 2004, 120: 442-450. 10.1111/j.0031-9317.2004.00251.x.
Article
CAS
PubMed
Google Scholar
Zúñiga G, Argandoiia VH, Corcuera LJ: Distribution of glycine-betaine and proline in water stressed and unstressed barley leaves. Phytochemistry. 1989, 28: 419-420. 10.1016/0031-9422(89)80024-X.
Article
Google Scholar
Siahsar BA, Narouei M: Mapping QTLs of physiological traits associated with salt tolerance in ‘Steptoe’ × ‘Morex’ doubled haploid lines of barley at seedling stage. J Food Agr Environ. 2010, 8: 751-759.
Google Scholar
KaviKishor PB, Hong Z, Miao GH, Hu CAA, Verma DPS: Over-expression of delta-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 1995, 108: 1387-1394.
Google Scholar
Zhu BC, Su J, Chan MC, Verma DPS, Fan YL, Wu R: Over-expression of a delta-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-stress and salt-stress in transgenic rice. Plant Sci. 1998, 139: 41-48. 10.1016/S0168-9452(98)00175-7.
Article
CAS
Google Scholar
Hong Z, Lakkineni K, Zhang Z, Verma DPS: Removal of feedback inhibition of delta-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol. 2000, 122: 1129-1136. 10.1104/pp.122.4.1129.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stewart CR: Role of carbohydrates in proline accumulation in wilted barley 1eaves. Plant Physiol. 1978, 61: 775-778. 10.1104/pp.61.5.775.
Article
PubMed Central
CAS
PubMed
Google Scholar
Christmann A, Elmar WW, Ernst S, Erwin G: A hydraulic signal in root-to-shoot signalling of water shortage. Plant J. 2007, 52: 167-174. 10.1111/j.1365-313X.2007.03234.x.
Article
CAS
PubMed
Google Scholar
Quarrie SA, Laurie DA, Zhu J, Lebreton C, Semikhodskii A, Steed A, Witsenboer H, Calestani C: QTL analysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparisons across cereals. Plant Mol Biol. 1997, 35: 155-165. 10.1023/A:1005864202924.
Article
CAS
PubMed
Google Scholar
Quarrie SA, Gulli M, Calestani C, Steed A, Marmiroli N: Location of a gene regulating drought-induced abscisic acid production on the long arm of chromosome 5A of wheat. Theor Appl Genet. 1994, 89: 794-800.
Article
CAS
PubMed
Google Scholar
Casaretto J, Ho TD: The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell. 2003, 15: 271-284. 10.1105/tpc.007096.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chandra Babu R, Zhang JA, Blum JA, Ho T-HD, Wu R, Nguyen HT: HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci. 2004, 166: 855-862. 10.1016/j.plantsci.2003.11.023.
Article
Google Scholar
Wang G, Schmalenbach I, von Korff M, Lèon J, Kilian B, Rode J, Pillen K: Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines. Theor Appl Genet. 2010, 120: 1559-1574. 10.1007/s00122-010-1276-y.
Article
PubMed Central
PubMed
Google Scholar
Caicedo AL, Stinchcombe JR, Olsen KM, Schmitt J, Purugganan MD: Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait. Proc Natl Acad Sci USA. 2004, 101: 15670-15675. 10.1073/pnas.0406232101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Phillips PC: Epistasis-the essential role of gene interactions in the structure and evolution of genetic systems. Nature Rev Genet. 2008, 9: 855-867. 10.1038/nrg2452.
Article
PubMed Central
CAS
PubMed
Google Scholar
Voorrips RE: MapChart: software for the graphical representation of linkage maps and QTLs. J of Heredity. 2002, 93: 77-78. 10.1093/jhered/93.1.77.
Article
CAS
Google Scholar
von Korff M, Wang H, Léon J, Pillen K: Development of candidate introgression lines using an exotic barley accession (H. vulgare ssp. spontaneum) as donor. Theor Appl Genet. 2004, 109: 1736-1745. 10.1007/s00122-004-1818-2.
Article
CAS
PubMed
Google Scholar
Schmalenbach I, March TJ, Bringezu T, Waugh R, Pillen K: High-resolution genotyping of wild barley introgression lines and fine-mapping of the threshability locus thresh-1 using the Illumina GoldenGate assay. G3. 2011, 1: 187-196. 2011.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jaccoud D, Peng KM, Feinstein D, Kilian A: Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 2001, 29: 1-7. 10.1093/nar/29.1.1.
Article
Google Scholar
Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesná J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A: A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics. 2006, 7: 206-10.1186/1471-2164-7-206.
Article
PubMed Central
PubMed
Google Scholar
SAS Institute: The SAS System for Windows, release 9.2. 2008, Cary NC: SAS Institute
Google Scholar
Broman KW, Speed TP: A model selection approach for identification of quantitative trait loci in experimental crosses. J R Stat Soc B. 2002, 64: 641-656. 10.1111/1467-9868.00354.
Article
Google Scholar
Bauer AM, Hoti F, von Korff M, Pillen K, Léon J, Sillanpää MJ: Advanced backcross QTL analysis in spring barley (H. vulgare ssp. spontaneum) comparing a REML versus a Bayesian model in multi-environmental field trials. Theor Appl Genet. 2009, 119: 105-123. 10.1007/s00122-009-1021-6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Benjamini Y, Yekutieli D: Quantitative trait loci analysis using the false discovery rate. Genetics. 2005, 171: 783-790. 10.1534/genetics.104.036699.
Article
PubMed Central
CAS
PubMed
Google Scholar