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Abstract

The availability of high-coverage genomes of our extinct relatives, the Neanderthals and Denisovans, and the
emergence of large, tissue-specific databases of modern human genetic variation, offer the possibility of probing the
effects of modern-derived alleles in specific tissues, such as the brain, and its specific regions. While previous research
has explored the effects of introgressed variants in gene expression, the effects of Homo sapiens-specific gene
expression variability are still understudied. Here we identify derived, Homo sapiens-specific high-frequency (≥ 90%)
alleles that are associated with differential gene expression across 15 brain structures derived from the GTEx database.
We show that regulation by these derived variants targets regions under positive selection more often than expected
by chance, and that high-frequency derived alleles lie in functional categories related to transcriptional regulation.
Our results highlight the role of these variants in gene regulation in specific regions like the cerebellum and pituitary.
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Significance statement
We show that almost-fixed variants distinguishing Homo
sapiens from Neanderthals and Denisovans have a pre-
viously underexplored role in the evolutionary history of
brain regions. We present evidence that these variants
accumulate in genomic regions under positive selection,
and that correlation with brain volume GWAS top hits,
suggesting a role of genetic regulation in shaping tissues
such as the cerebellum.

Introduction
Geometric morphometric analysis on endocasts [1–5]
have revealed significant differences betweenNeanderthal
and Homo sapiens skulls that are most likely the result of
differential growth of neural tissue. Specific brain regions
such as the cerebellum, the parietal and temporal lobes
have been hypothesized to have expanded in the Homo
sapiens lineage, with potential consequences for the evo-
lution and diversification of cognitive skills. Probing the
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nature of these consequences is challenging, but the avail-
ability of several high-quality Neanderthal and Denisovan
genomes [6–9] has opened numerous research opportuni-
ties for studying the evolution of the Homo sapiens brain
with unprecedented precision.
Efforts have been made to determine the molecular

basis of species differences based on a small number of
fixed missense mutations that are Homo sapiens-specific
[10, 11]. However, evidence is rapidly emerging in favor of
an important evolutionary role of regulatory variants, as
originally proposed more than four decades ago [12]. For
instance, regulatory variants are overrepresented in selec-
tive sweep scans to detect areas of the genome that have
been significantly affected by natural selection after the
split with Neanderthals/Denisovans [13].
The increasingly important role of gene regulation in

the evolution of Homo sapiens has led to the idea of con-
necting vast datasets of variation in genomic regulation to
the genetic sequences obtained from extinct humans. For
example, a major study [14] explored the effects of Nean-
derthal and Denisovan introgressed variants in 44 tissues
and found downregulaton by introgressed alleles in the
brain, particularly in the cerebellum and the striatum. In
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a similar vein, another study [15] examined the effects of
extinct human introgression on brain and skull shape vari-
ability in a modern human population to determine which
variants are associated with the globularized brain and
skull that is characteristic of our lineage. In consonance
with [14], the variants with the most salient effects were
those found to affect the structure of the cerebellum and
the striatum. Crucially, for these questions to be asked, we
must move beyond fully-fixed variants, and embrace the
variation found within modern human populations.
Building on these efforts, we decided to relate derived,

modern-specific alleles found at very high frequency
across modern populations to gene expression in the
brain, in order to examine the effects of genetic variation
relative to Neanderthals and Denisovans. To this end, we
took advantage of a recent systematic review, [16], which
provides an exhaustive dataset of derived, Homo sapi-
ens-specific alleles in modern human populations. This
dataset includes a subset of nearly-fixed (≥ 90%) vari-
ants that can determine common trends in current human
populations compared to other extinct human species.
To determine the predicted effect on gene expression of

these alleles we exploited the GTEx database. The GTEx
data consist of statistically significant allele effects on
gene expression dosage in single tissues, obtained from
tissues of adult individuals aged 20 to 60 [17]. By offer-
ing information about Expression Quantitative Trait Loci
(cis-eQTLs) across tissues, the GTEx database forces us to
think beyond variants that affect the structure and func-
tion of proteins, as well as to consider those that regulate
gene expression.
While the important role genetic regulation in human

evolution has been highlighted by previous studies
[18–21], we find that species-specific variants above a
high frequency threshold have a previously underexplored
role in human brain evolution. We show that regions
under putative positive selection are enriched in derived,
high-frequency (HF) eQTLs, and that the pituitary and
cerebellum have a significantly higher number of regula-
tory variability compared to other tissues and a control
set. We also show that derived alleles tend to have a down-
regulating effect but only when linkage disequilibrium is
not controlled for, a result that contrasts with previous
research on introgressed variants [14]. Finally, we present
a two sample Mendelian randomization analysis that cor-
relates variability in genes related to neurodevelopment
and brain volume GWASs.

Results
We retrieved variation data from [16], a dataset that
determines Homo sapiens allele specificity using three
high-coverage archaic human genomes available at the
moment (the Altai and Vindija Neanderthals [6, 7], and a
Denisovan individual [8]).

The variation data was crossed with the list of variants
obtained with the GTEx significant cis-eQTL variants
dataset to determine if the selected variants affect gene
expression, focusing on 15 central nervous system-related
tissues. The GTEx data consist of statistically significant
allele effects on gene expression dosage in single tissues,
obtained from brain samples of adult individuals aged 20
to 60 [17]. The resulting dataset is composed of Homo
sapiens derived alleles at high frequency that have a sta-
tistically significant effect (at a FDR threshold of 0.05, as
defined by the GTEx consortium [22]) on gene expression
in any of the selected adult human tissues.

Functional categories and tissue-specificity
In quantitative terms, our data amounts to 8,271 statisti-
cally significant SNPs associated with the regulation of a
total of 896 eGenes (i.e., genes affected by cis-regulation).
When controlling for total eQTL variance between brain
regions, a Chi-square test reveals that the proportion of
derived, HF eQTLs across tissues is significantly different
compared to the rest of non-derived, non-high-frequency
eQTLs (p < 2.2e − 16). A post-hoc residual analysis
indicates that regions such as the pituitary and the cere-
bellum are among the major contributors to reject the null
hypothesis that the distribution is similar between both
groups (p < 0.05). In other words, the pituitary and the
cerebellum are the two brain regions where Homo sapi-
ens-specific eQTLs accumulate relative to the control set
of variants.
Derived eQTLs at high frequency are significantly dif-

ferent from the categories of the rest of GTEx eQTL vari-
ants in brain tissues (Chi-square test, p < 2.2e−16). NMD
(nonsense-mediated mRNA decay target) transcript, non
coding transcript , and 5′-UTR (untranslated region) vari-
ants are the categories driving significance (p =< 2.2e−16
for the three sets, residual analysis).
To account for linkage disequilibrium and ensure statis-

tical independence, variant clumping was applied through
the eQTL mapping p-value at a r2 = 0.1. After clump-
ing, the dataset was reduced to 1,270 alleles across tissues,
out of which 211 are region-specific (Fig. 1B). Because
eQTL discovery is highly dependent on the number of
tissue samples [22], tissues with more samples tend to
yield a higher number of significant variants, regardless
of tissue specificity (Fig. 1C), as shown by a Spearman
correlation test (p = 0.0017; r = 0.74, controlled for link-
age disequilibrium). A polynomial regression line fit (blue
line in Fig. 1C) shows that the cerebellum, adrenal gland
and BA9 fall outside the local regression’s standard error
confidence intervals (in gray in Fig. 1C).
We sought to understand if the cerebellum, adrenal

gland and BA9 stand out considering that most eQTLs
are shared among regions. The distribution of clumped
region-specific variants (Fig. 1B) does not correlate with
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Fig. 1 A Hierarchical clustering analysis of eQTL normal effect size, not controlled for linkage disequilibrium (LD). Color denotes hierarchical
distance. B Number of tissue-specific eQTLs after clumping. Adrenal gland and Amygdala do not contain tissue-specific eQTL in our dataset. C Brain
region sample size and eQTL count correlate in our dataset. The blue line marks a polynomial regression line fit, with regression’s standard error
confidence intervals (95%) in gray
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GTEx RNAseq sample size (p = 0.9495, Pearson corre-
lation test). This lack of correlation might be explained
by known effects of genetic regulation disparity between
brain regions, reflected in distinct eQTL mappings for
cerebellar tissue [23, 24]. Additionally, we designed a ran-
dom sampling testing approach (n = 100) to see if any
particular region tends to draw more clumped unique
eQTLs regardless of total eQTL values. The test reveals
no significant difference in proportions (p = 0.3647, Chi-
square independence test). The fact that the adrenal gland
and the amygdala have no unique clumped variants might
be underlying this result.

Genomic regions under positive selection are enriched in
eQTLs
To determine further the evolutionary significance of any
of the variants in our data, we ran two randomization
and permutation tests (N = 1, 000) to test whether the
derived HF eQTLs fell within regions under putative pos-
itive selection relative to other hominins as identified in
two selective sweep studies [13, 25].
We found a significant (p = 0.001, observed = 525 over-

lapping regions, expected = 53) overlap between eQTLs
and regions of positive selection as defined by [13], as well
as in an earlier independent study [25] (p < 0.02, observed
= 673, expected = 177, Fig. 2A and B). AWilcoxon signed-
rank test shows that the number of eQTLs found in
positive selection regions (visualized per region in Fig. 2C)
is significantly different between studies (p = 6.104e−05,
after controlling for length differences in the windows
detected by each study). A Dunn test (after Bonferroni
group correction) failed to find a significant difference
between the count of alleles per region in each selective
sweep, despite the apparent concordance of the studies in
the cerebellum (Fig. 2C). We take this to mean that pos-
itive selection does not reflect a significant accumulation
of eQTL variants in any given brain region, but rather
seems to affect high-frequency derived eQTLs in general.

eQTL directionality depends on LD but not allele frequency
or brain region
Aprevious study [14] had suggested that Neanderthal alle-
les present in the modern human genetic pool downreg-
ulate gene expression in brain tissue. This study also used
the GTEx data, but focused on Neanderthal introgressed
variants as opposed to Homo sapiens-derived ones.
In our derived HF eQTL dataset (Fig. 3B), we did not

observe any significant deviance from the expected 50%
proportion between down and upregulating variants (p =
0.3656, Chi-square test). A significant deviance from the
expected 50% proportion (p < 2.2e − 16, Chi-square test)
does obtain, however, when linkage disequilibrium is not
controlled for (Fig. 3A). A hierarchical cluster analysis of

the distance of normalized effect size between regions
in non-clumped eQTLs shows how the substantia nigra
is particularly affected by the downregulating direction
skewness effect (Fig. 1A). This contrasts with the result
found by [14], who found this downregulation effect in
cerebellum and the striatum in introgressed dataset, sug-
gesting that variants specific to our lineage do not affect
gene expression in the brain in a particular direction.
The same deviation from the expected 50% up and

down-regulation proportion was present in major ances-
tral alleles at a 90% frequency threshold (p =< 2.2e − 16,
Chi-square test, Fig. 3C), discarding the possibility that
the asymmetry is due to allele frequency cutoffs. Post-
hoc residual analysis shows that downregulating eQTL
skewness affects different tissues in the major and minor
ancestral eQTL sets. We conclude that asymmetric direc-
tionality of eQTL regulation is not specific to a given
tissue nor is accounted for by frequency.

Derived eQTLs are correlated with top hits in brain volume
GWASs
As [14] had found that some of the introgressed variants
from Neanderthals were also top GWAS hits, we hypoth-
esized that derived variants might also reflect some of the
changes that are characteristic of our species. We decided
to focus on structural changes beyond the cerebral cor-
tex since these are much harder to capture by endocasts,
and they tend to be underrepresented in the brain evolu-
tion literature. By contrast, allelic effect in gene expression
can be contrasted withmodern brain volumeGWAS stud-
ies via two sample Mendelian randomization tests. Thus,
we chose 10 brain volume GWASs that are part of the
UKBiobank and IEUGWAS curated catalogs.We selected
four studies centered on the volume of distinct subregions
of the cerebellum (left and right white matter tracts and
cortices), as well as GWASs studying the volume of other
subcortical structures: putamen, hippocampus, amygdala,
thalamus, caudate and hippocampus (see Methods).
We first selected the top eQTL hit per gene and struc-

ture based on their eQTL p-value, under the assump-
tion that is the variant more strongly associated with
genetic regulation, and filtered by presence in the catalog
of derived alleles by [16]. We chose not to use high-
frequency variants exclusively, as pleiotropy and link-
age disequilibrium may confound the results. Under a
pleiotropy model, a variant affects two different pheno-
types, mixing the signal of different GWASs, while linkage
disequilibrium can affect two sample Mendelian random-
ization by falsely detecting causality in a high frequency
variant that is only in high LD with the real causal variant
(one not necessarily being almost fixed or derived). The
selected variants were analyzed following Wald ratio tests
per gene/structure volume associations.



Andirkó and Boeckx BMCGenomic Data           (2022) 23:36 Page 5 of 10

Fig. 2 Derived, HF eQTLs are present more than expected by chance in selective sweeps from [13] (A) and [25] (B). C shows the count of eQTL
overlapping with regions under putative positive selection per region
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Fig. 3 Distribution of up and down-regulating ancestral variants across different subsets of the data, in all eGenes. We include here data before (A)
and after (B) controlling for linkage disequilibrium in minor alleles (≥10% frequency). A control using major ancestral alleles (at ≥90% frequency) is
included (C)

The results (corrected by Bonferroni) highlight genes
associated with neurodevelopment and cerebellar dis-
orders. This is consistent with the kind of phenotypes
one would expect for genes associated with brain vol-
ume GWASs. However, the importance of these results
lies on pinpointing which specific genes have been
affected over the course of Homo sapiens evolution.
Among the genes related to cerebellar volume in the
four substructure GWASs we find genes related to
ataxia (PEX7, MRPS27, PTK2 [26–28]), neurodevelop-
ment (YPEL3, CASP6, TRIM11, GNB5 [29–32]) and
microcephaly (PDCD6IP, USP28 [33, 34]). Of note, hits
for other brain structures did not correspond with eQTL
regulation in the relevant tissue or have no identified
functional role in brain development.
To reveal if the eQTL signal was the same as those of

brain volume GWAS top hits, we ran Bayesian colocal-
ization tests for all the eQTL that survived two sample
Mendelian Randomization. However, we found that the
probability that GWASs and derived eQTLs share the
same signal is very low (< 6%). We therefore conclude
that there is no causal relationship between eQTL expres-
sion changes and subcortical volumeGWASs, and that the
relationship identified here is of correlation.

Discussion
In this study we sought to shed light on the impact of
modern-human-specific alleles found at high frequency
on gene regulation across brain regions. Our intentionwas
to complement previous work that focused on the effects
of introgressed variants from Neanderthals [14, 15].

We found that high-frequency derived eQTL indeed
constitute a very useful category to understand pheno-
typical changes specific to our lineage. As reported in the
results, these variants accumulate more than expected
relative to the control set of eQTLs in the cerebellum and
pituitary, are functionally differentiated and overrepre-
sented in windows of the genome associated with signals
of positive selection. Also, the enrichment of 5′UTR
categories in HF derived eQTLs suggests a role for regu-
latory variants in Homo sapiens evolution (as discussed in
[18–20]).
Contrary to [14] we did not find a significant skewness

towards downregulation in derived eQTLs, regardless
of frequency. This downregulating effect was previously
detected as a characteristic of Neanderthal alleles intro-
gressed in the modern human genetic pool [14]. The
derived eQTLs examined here did show directional reg-
ulatory asymmetry but only when linkage disequilibrium
was not controlled for. Additional testing indicates that
the effect is not introduced by the high frequency cut-
off imposed to the data, nor introduced by the bias of a
particular region in either HF or non-HF alleles. We sug-
gest that derived HF variants mapped as eQTLs might
affect the modern human genetic regulation landscape in
virtue of either being drivers of positive selection or being
in linkage disequilibrium with causal, positively selected
variants.
This idea is reinforced by our results in GWAS colo-

calization, showing that despite the correlation of eQTLs
with subcortical brain volume GWAS top hits, there is
no shared genomic signal between GWAS summary data
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and derived variants affecting gene expression variability.
Several reasons could be put forward for this: It could be
the case that the underlying causal variants are in high
LD with derived eQTL and either (i) derived variants not
captured by eQTL mapping, or (ii) non-derived variants
that gain functionality by the effects of derived alleles in
gene expression. Even if colocalization didn’t detect causal
variants, some of the eQTLs correlated with GWAS hits
might be affecting neural phenotypes that do not leave
a clear imprint in endocasts. For example, we find that
derived variability in genes related to cerebellar develop-
ment is correlated with this substructure’s volume. The
same effect was not found in other subcortical structures,
as discussed in Derived eQTLs are correlated with top hits
in brain volume GWASs section. However, the pituitary,
along with the cerebellum, has a significantly high number
of derived eQTLs relative to controls, not explained by LD
artifacts (Fig. 2B). This is relevant in light of claims that
the Hypothalamic-pituitary-adrenal (HPA) axis played a
role in the evolution of our social cognition [35, 36].
Wewish to stress that our focus on brain(-related) struc-

tures in no way is intended to claim that only the brain is
the most salient locus of difference between moderns and
Neanderthals/Denisovans. While other organs undoubt-
edly display derived characteristics, we have concentrated
on the brain here because our primary interest lies in cog-
nition and behavior, which is most directly affected by
brain-related changes. In addition, we want to end with
listing several limitations. First, like other current work
making use of DNA retrieved from extinct hominins, we
are constrained by the small number of high-coverage
genomes currently available. While we certainly hope that
this number will increase in the future, and yield a richer
picture of variation in our relatives, it seems to us that
despite this limitation, comparisons between us and our
closest extinct relatives in the last decade have yielded
valuable information that would not have been accessible
otherwise. Second, our work would benefit enormously
from an even better grasp of variation within human pop-
ulations, and we look forward to more inclusive samplings
in the future. Third, as indicated above, the GTEx dataset
we used offers data from individuals aged 20 to 60 years.
As such, it limits our ability to probe the nature of dif-
ferential effects of derived alleles at earlier developmental
stages, which are no doubt extremely relevant for all the
brain regions examined here. Our findings will therefore
have to be complemented with other methods to offer a
more comprehensive view of recent brain evolution in the
future.

Methods
We accessed the Homo sapiens variant annotation data
from [16]. The full dataset at the basis of this study is
publicly available at https://doi.org/10.6084/m9.figshare.

8184038. The catalog consists of archaic-specific vari-
ants as well as all loci displaying variation within modern
populations, using the 1000 genomes project and ExAc
data to determine frequencies and the human genome
version hg19 as reference. As described in the original
article, the authors additionally imposed quality filters
pertaining to the archaic genomes: sites with less 5-fold
coverage and more than 105-fold coverage for the Altai
individual, or 75-fold coverage for the rest of archaic indi-
viduals were not taken into consideration). For ambiguous
cases, ancestrality of the relevant variant was assigned
using multiple genome aligments [37] and the macaque
reference sequence (rheMac3) [38].
For replication purposes, we wrote a script that repro-

duces the 90% frequency cutoff point used in the original
study. We filtered the variants according to the guide-
lines in [16] such that: 1) all variants show 90% allele
frequency, 2) the major allele present in Homo sapiens is
derived. Ancestrality relative to great apes is either deter-
mined by the criteria in [37] or by the macaque reference
allele in ambiguous loci. Ancestrality relative to extinct
human species relies on two possible conditions: 1) either
archaic reliable genotypes have the ancestral allele, or 2)
the Denisovan carries the ancestral allele and one of the
Neanderthals the derived allele (accounting for gene flow
from Homo sapiens to Neanderthal).
Additionally, the original study we relied on [16] applies

the 90% frequency cutoff point in a global manner: it
requires that the global frequency of an allele be more
than or equal to 90%, allowing for specific populations
to display lower frequencies. Using the metapopulation
frequency information provided in the original study,
itself derived from the 1000 Genomes Project, we applied
a more stringent filter and removed any alleles that
where below 90% in any of the five major metapopula-
tions included (African, American, East Asian, European,
South Asian). We then harmonized and mapped the high-
frequency variants to the data provided by the GTEx
database [22]. In order to do so we pruned out the alleles
that did not have an assigned rsIDs.
GTEx offers data for the following tissues of inter-

est: Adrenal Gland, Amygdala, Caudate, Brodmann Area
(BA) 9, BA24, Cerebellum, Cerebellar Hemisphere, Cor-
tex, Hippocampus, Hypothalamus, Nucleus Accumbens,
Pituitary, Putamen, Spinal Cord, and Substantia Nigra. Of
these samples, cerebellar hemisphere and the cerebellum,
as well as cortex and BA9, are to be treated as dupli-
cates [17]. Although not a brain tissue per se, the Adrenal
Gland was included due to its role in the Hypothalamic-
pituitary-adrenal (HPA) axis, an important regulator of
the neuroendocrine system that affects behavior.
Post-mostem mRNA degradation affects the number

of discovered eQTLs in other tissues. However, we did
not control for post-mortem RNA degradation, since the

https://doi.org/10.6084/m9.figshare.8184038
https://doi.org/10.6084/m9.figshare.8184038


Andirkó and Boeckx BMCGenomic Data           (2022) 23:36 Page 8 of 10

Central Nervous System has been shown to be rela-
tively resistant to this effect [39]. However, re-sampled
tissues (here labeled ‘cerebellar hemisphere’ and ‘Cortex’
following the original GTEx Consortium denominations)
do show differences compared to their original samples
(‘cerebellum’ and ‘BA 9’). We acknowledge that the result-
ing data are limited by inherent problems of the GTEx
database, such the use of the same individuals for differ-
ent brain tissue samples, the reduced discovery power of
rare variants [17], and other artifacts introduced during
RNAseq analysis.
Clumping of the variants to control for Linkage Dis-

equilibrium was done with Plink (version 1.9) through
the ieugwasr R package [40], requiring a linkage dise-
quilibrium score of 0.90 (i.e., co-inheritance in 90% of
cases) for an SNP to be clumped. The nominal p-value of
eQTL mapping was used as the criterion to define a top
variant; i.e., haplotypes were clumped around the most
robust eQTL candidate variant. Linkage disequilibrium
values are extracted from the 1000 Genomes project ftp
server (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
20130502/) by the ieugwasr R package.
Distance values for tissue hierarchical clustering were

calculated by using the mean values of the normalized
effect size of derived HF eQTLs.
We performed the permutation test (n=1,000) with the

R package RegioneR [41] using the unclumped data, as
variants might clump around an eQTL falling outside win-
dows of putative positive selection, underepresenting the
number of data points inside such genomic areas and
reducing statistical power.
We ran the two sample Mendelian Randomization tests

at a p = 5e−04 threshold for top hit identification through
the ieugwasr [40], MRinstruments, and the colocalization
tests through the gwasglue package. The selected GWASs
for colocalization can be consulted in the relevant section
of the article’s code.
Figures were created with the ggplot2 R package [42]

and RegioneR [41]. All statistical tests were controlled
for power (≥ 0.8). The human selective sweep data was
extracted from Supplementary Table S5 of [25], and from
Supplementary Table S2 of [13]. GWAS summary data
and harmonized top eQTL instruments for two sample
Mendelian Randomization were extracted from the IEU
GWAS database API [40].
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