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Abstract

region, respectively.

in the molecular breeding of high-latitude rice.

Background: Heilongjiang Province is a high-quality japonica rice cultivation area in China. One in ten bowls of
Chinese rice is produced here. Increasing yield is one of the main aims of rice production in this area. However,
yield is a complex quantitative trait composed of many factors. The purpose of this study was to determine how
many genetic loci are associated with yield-related traits. Genome-wide association studies (GWAS) were performed
on 450 accessions collected from northeast Asia, including Russia, Korea, Japan and Heilongjiang Province of China.
These accessions consist of elite varieties and landraces introduced into Heilongjiang Province decade ago.
Results: After resequencing of the 450 accessions, 189,019 single nucleotide polymorphisms (SNPs) were used for
association studies by two different models, a general linear model (GLM) and a mixed linear model (MLM),
examining four traits: days to heading (DH), plant height (PH), panicle weight (PW) and tiller number (TI). Over 25
SNPs were found to be associated with each trait. Among them, 22 SNPs were selected to identify candidate genes,
and 2,8, 1 and 11 SNPs were found to be located in 3" UTR region, intron region, coding region and intergenic

Conclusions: All SNPs detected in this research may become candidates for further fine mapping and may be used

Keywords: Oryza sativa japonica, GWAS, Yield trait, Resequencing, Rice breeding

Background

Rice cultivated in Asia is the staple food for most of the
population worldwide. Research on its genetic variation,
population structure and diversity has advanced greatly
in recent decades [1-3]. Cultivated rice belongs to differ-
ent subspecies or varietal groups and shows different
domestication characteristics. Additionally, the domesti-
cated subspecies include two main groups: Oryza sativa
japonica and O. sativa indica. However, evidence sug-
gests that they may have been domesticated separately
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from the ancestral species approximately 18 and 12
thousand years ago [4]. Genomic studies have confirmed
the differentiation of three subspecies within O. sativa
japonica, temperate, subtropical and tropical japonica,
which grow in diverse environments with different cli-
mate characteristics [5].

Every subspecies may have distinctive signatures or al-
leles that are formed during domestication or artificial
selection. People in a specific area selected particular
traits for their consumption needs [6]. Many studies of
different genes showed clear evidence of positive selec-
tion during the evolutionary process, such as genes re-
lated to waxiness and cold tolerance [7-9]. Research
focused on a subspecies or a population collected from a
specific geographical region may reveal distinctive
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characteristics. Moreover, functional alleles or loci will
be identified with certain analysis methods.

Quantitative trait locus (QTL) analysis has turned out
to be a very effective tool for gene and locus discovery in
recent years. A large number of genes have been cloned
based on QTLs from different species around the world
[10-12]. The emergence of high-throughput genome se-
quencing technology has decreased the expense and en-
hanced its efficiency. Combined with population
phenotypes, many statistical analysis measures have been
developed based on next-generation sequencing or
single-nucleotide polymorphism (SNP) chips. This ap-
proach is called genome-wide association study (GWAS)
and became widely used within a short time after being
proposed. Its three main advantages over other popula-
tion analysis methods are higher mapping resolution, a
larger allele number and broader reference population,
and lower time consumption [13]. Genome-wide associ-
ation studies can be performed in a wide range of popu-
lations, such as germplasm resource material, [14, 15] F2
populations, [16] nested association mapping (NAM)
populations, [17] multiple advanced generation inter-
cross (MAGIC) populations [18, 19] and random open-
parent association mapping (ROAM) populations [20,
21]. Multiple statistical models can be used in GWAS
based on different populations or scales of SNP num-
bers, [22, 23] and population structure and genetic rela-
tionships can be taken into consideration [24, 25]. It has
been more than 10 years since GWAS was first pro-
posed, [26] and many mature workflows and analysis
tools have been developed [27, 28]. The application of
GWAS in rice has been widely reported in recent years.
Alleles or SNPs located by GWAS have been applied in
rice molecular breeding [29, 30].

Yield is one of the main traits that rice breeders focus
on because of its relevance to worldwide food security.
Nearly half of the world population consumes rice as a
staple food. Yield is also known to be a multigene con-
trolled trait, and many genes and loci have been found
that could account for yield differentiation. Furthermore,
yield is a complicated trait that is affected by many other
traits, such as the tiller number, plant height, grain num-
ber, grain weight and number of primary branches [31,
32]. Association analysis with different populations may
identify some unique genes or loci that contribute to
specific traits. Therefore, it is necessary to identify novel
genes or loci in a different population that may play a
role only in a specific environment.

Rice cultivated at high latitudes in Asia shows many
good characteristics, such as cold tolerance and high
quality. There might be a large number of effective al-
leles that would be useful for further breeding for these
traits. Few studies have focused on high-latitude natural
populations and their effective alleles. In this research,
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we collected hundreds of cultivars and landraces as a
natural population from high-latitude areas, including
Northeast China, South Korea, Russia and Japan, and
performed GWASs to examine their PH, PW, TI and
DH in four different environments in Heilongjiang Prov-
ince, China, with the aim of discovering genes or associ-
ated SNPs that could account for the differentiation of
phenotypes and are expected to be used in further
breeding programs.

Results

Phenotyping of different traits

The plant height of 450 accessions ranged from 51.33
cm to 146.67 cm, with an average of 93.67 cm (Supple-
mentary Table 2). In all four locations, plant height
showed a normal distribution and a similar median with
no significant difference except in Heihe, which may be
due to a short growing season (Fig. 1A). The TI and PW
in the four locations showed differences from each
other, and in Heihe, these two traits showed narrower
ranges than in the other locations (Fig. 1B-C). The DH
showed a gradient change with increasing latitude. Wu-
chang and Harbin have similar means of DH, 94 and 93,
respectively. However, at higher latitudes, DH signifi-
cantly increased because of the longer daylight (Fig. 1D).
Analysis of variance for the four traits showed significant
differences (<0.001). However, broad-sense heritability
gave a higher estimate for PH (0.89) and DH (0.95) and
a lower estimate for TI (0.68) and PW (0.47).

Resequencing results and SNP distribution
Approximately 1227 billion bases in total were obtained
after resequencing, with an average of 6.3x sequencing
depth and 18.9 million reads for each accession (Supple-
mentary Table 1). Over 6.4 million SNP loci were called
among the 450 accessions, indicating an average of 57
bp between pairs of SNPs. SNPs on each chromosome
ranged from 0.39 million (chromosome 3) to 0.76 mil-
lion (chromosome 11), with an average of 0.54 million
per chromosome. According to the minor allele fre-
quency (MAF) statistics, nearly 65% had an MAF less
than 0.05, 20.6% had an MAF greater than 0.1 and 8.1%
had an MAF greater than 0.25. The mean MAF on each
chromosome varied between 0.052 and 0.085, with an
average of 0.07 across all chromosomes.

Linkage disequilibrium and SNP distribution

After filtering by MAF and missing genotype rate,
1,991,545 SNPs remained, and all these SNPs were used
for linkage disequilibrium (LD) decay analysis across all
chromosomes. The LD decay distance ranged from 15
kb to 27 kb, with an average of 20 kb in the four groups
predicted by population structure analysis (Supplemen-
tary Fig. 1A). However, the LD decay distance of all
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Fig. 1 Histogram of 450 plants in Wuchang, Haerbin, Jiamusi and Heihe (from left to right of each line): PH (A), Tl (B), PW (C), DH (D). The red line
indicates the fitted curve of the distribution

accessions was 23 kb, which means that /* dropped to
half of its maximum value (Supplementary Fig. 1B). This
LD decay distance was lower than the previous estimate
in temperate japonica but higher than that in O. rufipo-
gon, [33] which may be affected by landraces in the
population and possibly by having undergone weakened
artificial selection. Finally, we filtered the SNPs based on
the #* value, and 189,019 SNPs were retained for subse-
quent analyses, indicating one SNP every 2 kb across the
whole genome. These SNPs corresponded to 194,313
variants and 537,957 effects. Most SNPs were down-
stream of genes (30.29%), intergenic (24.17%) or up-
stream of genes (31.37%) (Fig. 2A).

Genetic diversity and population structure

According to the population structure evaluation, when
K =2, all 450 accessions were divided into two groups.
Group 1 contained 396 accessions (88.0%), mostly

breeding varieties. Group 2 contained 54 (12.0%) acces-
sions, mostly cultivar introductions (Fig. 2B). When K =
3, the Group 1 subdivided into two groups, but Group 2
had no change. When K =4, the two groups subdivided
from Group 1 maintained with a few individuals chan-
ged, but Group 2 subdivided into two groups. For K lar-
ger than 4, the two groups subdivided from Group 2
maintained, but the Group 1 subdivided into more
groups (Supplementary Table 1).

To further illustrate the population structure of our
research panel, principal component analysis (PCA) was
performed. When the first and second eigenvectors were
used, all accessions could be divided with four subgroups
(Fig. 2C, Supplementary Fig. 1A). However, when di-
vided into more than four groups, Group 2 was divided
into more than two groups that showed indistinct
boundaries (Fig. 2D, Supplementary Fig. 2B-F). Based on
the above results, it is more representative when all
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accessions were divided into four groups and suitable for
further analysis. But greater difference were shown be-
tween Group 1 and Group 2 when K=2.

A kinship matrix was calculated to detect the genetic
relationship within the population. The coefficient of re-
latedness ranged from — 0.25 to 2.01, and a kinship heat
map was drawn to visualize the relationships. It is clear
that only the upper left corner has a relatively close rela-
tionship, and the other accessions have a lower coeffi-
cient of relatedness (Fig. 3), indicating that the
population used in our research conform to a natural
populations but with few relatedness between some
accessions.

Genome-wide association analysis

The GLM found 597 SNPs to be significantly associated
with four traits in total, but the MLM found only 322
(Table 1, Supplementary Table 3). For DH traits, no
identical locus was found between the two models. By
GLM, 144 loci were significantly associated with DH,
and 25 loci were found at more than two locations on
chromosomes 4, 6, 7 and 11. However, by MLM, only 2
and 25 SNPs were found to be significantly associated
with DH in Wuchang and Heihe (Table 1, Fig. 4A, Sup-
plementary Fig. 5A). Twenty-five of them throughout all
12 chromosomes were from Heihe. Three SNPs on
chromosome 7 shows larger effects and detected in
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multi-environment (Table 2). For PH, 49 SNPs were
found in three locations by GLM, 14, 6 and 29 SNPs in
Harbin, Heihe and Wuchang, respectively, 2 of which on
chromosome 11 and chromosome 12 were detected in
both Heihe and Wuchang. Twenty-five SNPs were iden-
tified in only two locations by MLM, 1 and 24 in Heihe
and Wuchang (Table 1, Fig. 4B, Supplementary Fig. 3B,
Supplementary Fig. 5B). Twenty-three were detected by
different methods at the same time or the same loca-
tions. Only 1 SNPs shows larger effects than other posi-
tions on chromosome 5 (Table 2). For TI, 53, 51, 9 and
3 SNPs were found by GLM in Harbin, Wuchang, Jia-
musi and Heihe, respectively. By MLM, 41 and 2 were
found in Wuchang and Harbin, but in Jiamusi and
Heihe, only one for each location. Interestingly, all SNPs
detected by MLM in Harbin, Jiamusi and Wuchang were
also detected by GLM, but no SNPs were detected be-
tween any two locations by the same method (Table 1,
Fig. 4D, Supplementary Fig. 3-5D). Among these SNPs,
8 were larger effects and detected by two models. For
PW, the most significantly associated loci, 247 and 225,

Table 1 Summary of significantly associated loci identified by
different methods

GLM MLM

HA wu JA HE HA wu JA HE
PH 14 29 - 6 - 24 - 1
PW 1 242 - 4 1 222 - 2
Tl 53 51 9 3 2 41 1 1
DH 8 83 16 78 - 2 - 25

were found by GLM and MLM, respectively. By GLM,
only 1 and 4 SNPs were detected in Harbin and Heihe,
respectively, but 242 were detected in Wuchang across
all 12 chromosomes. Similar to GLM, MLM detected
only 1 and 2 SNPs in Harbin and Heihe but 222 in Wu-
chang (Fig. 4C). Notably, all SNPs detected by MLM
were also detected by GLM, except for 2 SNPs in Wu-
chang (Table 1, Supplementary Fig. 3-5C). Among these
SNPs, 8 were larger effects and detected by two models.
Interestingly, 3 SNPs (S4_32507995, S5_2003327, S11_
8842451) were detected for both TI and PW by GLM
(Table 2).

Candidate gene identification

A total of 317 SNPs detected either by two models or in
more than two locations were selected for candidate
gene identification. Of them, 223 SNPs were used for
PW, and 19 missense variants, 1 splice region variant
and 1 stop gained locus were identified (Table 3). Four
missense variants were identified for TI, 3 for PH and
only 1 for DH. Among these SNPs, Candidate genes of
twenty two larger effect or pleiotropic SNPs were identi-
fied. Within gene regions, eleven SNPs were found. Two
of them were 3 prime UTR variants, eight were found to
be intron variants and only one SNP was synonymous
variant. Eleven SNPs were located in intergenic region.
The distance between SNPs and the nearest genes
ranged from O to 18.9 kb (Table 4). All these genes exe-
cute unknown biology functions in O. sativa japonica
group, according to the Rice Genome Annotation Pro-
ject database.
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Table 2 Twenty larger effect SNPs and three pleiotropic SNPs
Trait Model Location Marker Chr® Position Lop®
DH GLM HA/HE/WU S7_8832791 7 8,832,791 8.2062/13.9051/11.5954
DH GLM HA/HE/WU/JA S7_29566846 7 29,566,846 9.1926/14.0176/https://doi.org/10.8388/9.5634
DH GLM HA/HE/WU/JA $7_29238189 7 29,238,189 8.7844/14.7984/11.7642/8.9488
PH GLM/MLM wWu S5_11687290 5 11,687,290 8.5651/8.1938
Tl GLM/MLM Wu S2_9226198 2 9,226,198 11.5279/104231
Tl GLM/MLM WU S2_13626408 2 13,626,408 9.3376/8.1539
Tl GLM/MLM wu S2_34946356 2 34,946,356 11.4379/100110
Tl GLM/MLM WU S4_7050530 4 7,050,530 14.1317/119763
Tl GLM/MLM WU S7_3214984 7 3,214,984 https://doi.org/10.1969/8.6595
Tl GLM/MLM wu S9_8477108 9 8,477,108 https://doi.org/10.5361/9.0133
Tl GLM/MLM Wu $11_8842451 " 8,842,451 8.4670/8.1336
Tl GLM/MLM Wu S11_26127237 " 26,127,237 9.8739/8.1161
PW GLM/MLM Wu S1.29521211 1 29,521,211 17.7022/14.8049
PW GLM/MLM wWu S3_13365688 3 13,365,688 https://doi.org/10.2207/9.2723
PW GLM/MLM Wu S4_16690715 4 16,690,715 https://doi.org/10.0706/9.1917
PW GLM/MLM wWu S4_22584137 4 22,584,137 https://doi.org/10.7148/8.4903
PW GLM/MLM WU S6_8044409 6 8,044,409 https://doi.org/10.6151/8.7926
PW GLM/MLM wWu S7_9482292 7 9,482,292 9.7741/8.7687
PW GLM/MLM wWu S8_22791456 8 22,791,456 16.3799/14.3599
PW GLM/MLM WU S11_5366552 " 5,366,552 https://doi.org/10.1661/8.6426
TI/PW GLM WU S4_32507995 4 32,507,995 9.0813/84376
TI/PW GLM wWu S5_2003327 5 2,003,327 7.2883/8.5209
TI/PW GLM WU $11_8842451 " 8,842,451 8.4670/8.1495
?Chromosome
LOD value in different locations or with different models

Discussion

Table 3 Summary of annotation variants for four traits

Traits DH PH PW Tl
number of SNPs 25 25 223 44
number of variants 27 26 229 46
number of effects 81 64 589 133
chromosome 4,6,7,11 1,3-8,10-12  1-12  1-12
3" UTR variant - - 3 -
5" UTR variant 2 - 1
downstream gene variant 29 19 170 38
frameshift variant - - 1 -
intergenic region 16 18 143 31
intron variant 1 2 33 10
missense variant 1 3 19 4
splice region variant - - 1

stop gained - - 1
synonymous variant - 3 31 4
upstream gene variant 22 19 187 46

Many models have been reported for use in GWAS, [23,
34, 35] and GLM and MLM are two that have been used
frequently to analyse a variety of plants [15, 36]. In
GLM, the principal components or population structure
needs to be taken into consideration as a fixed effect.
However, in MLM, relative kinship should be added as a
random effect, although the result is still less efficient
for large data sets. Many other algorithms have been de-
veloped to address this problem, such as the compressed
MLM, [35] efficient mixed-model association expedited
(EMMAX) algorithm and [37] and factored spectrally
transformed linear mixed model (FaST-LMM) [38].
When different models are compared, some of them
show high statistical power but low computational
speed, while others show intermediate statistical power
but very fast computational speed [26]. For further gene
screening, these models should be adapted to increase
the accuracy of the associations and narrow down the
possible associated interval.

Association analysis was first used on populations of
unrelated human individuals, [39] but it is difficult to
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Table 4 Candidate genes identified from 22 detected SNPs for 4 traits
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SNP Chr? Gene ID? Annotation Distance (kb)“
S1.29521211 1 LOC_0Os01g51330 3 prime UTR variant 0.0
$2_9226198 2 LOC_0s02g16230 intergenic region 23
S2_13626408 2 LOC_0s02g22820 intergenic region 189
S2_34946356 2 LOC_0s02g57080 intron variant 0.0
S3_13365688 3 LOC_0s03g23110 intron variant 0.0
S4_7050530 4 LOC_0s04g12744 intergenic region 25
S4_16690715 4 LOC_0s04g28234 3 prime UTR variant 0.0
S4_22584137 4 LOC_0s04g37960 intron variant 0.0
S4_32507995 4 LOC_0Os04g54690 intergenic region 0.0
S5_11687290 5 LOC_0s05g19990 synonymous variant 0.0
S5_2003327 5 LOC_0s05g04370 intergenic region 0.5
S6_8044409 6 LOC_0Os06g14406 intron variant 0.0
S7_8832791 7 LOC_0s07g15330 intron variant 0.0
S7_29566846 7 LOC_0s07g49370 intron variant 0.0
S7_29238189 7 LOC_0s07g48870 intergenic region 39
S7_3214984 7 LOC_0s07g06610 intergenic region 09
S7_9482292 7 LOC_0s07g16240 intergenic region 34
S8_22791456 8 LOC_0s08g36160 intergenic region 2.5
S9 8477108 9 LOC_0s09g14350 intron variant 0.0
S11_8842451 11 LOC_Os11g15590 intron variant 0.0
S11_26127237 " LOC_0Os11g43300 intergenic region 33
S11_5366552 1 LOC_Os11g10010 intergenic region 09
?Chromosome

bGene ID from MSU genome annotation database (version 7.0)

“The distance between SNPs and the nearest gene. The 0 kb means that the SNP located inside the gene
%The distance between the SNP S4_32507995 and the gene LOC_0s04g54690 is 28 bp

collect natural plant populations with distant genetic re-
lationships in a local area. Although many accessions
collected in this research were from South Korea, Russia
and Japan, many of them were elite varieties derived
from the same ancestral parents. Meanwhile, informa-
tion on some cultivars was lost, resulting in unknown
origins. Genetic population analysis also showed that the
distinctions among some of these accessions were ob-
scure (Fig. 3), so further research is needed to optimize
the population structure and screen the research panels
to obtain a clearer population structure [40, 41].
Principal component analysis has been shown to be a
substitute for population structure in GWAS [42].
Therefore, we chose the first five components as the
population structure matrix to conduct a GWAS. The
eigenvalue derived from PCA was proportionally low be-
cause of the large population scale (6.79% for the first
principal component, data not shown). The smooth
downward trend of the eigenvalue made it difficult to
choose the number of components for association ana-
lysis (Supplementary Fig. 6 ) [43]. The different ways of

dividing population groups by population structure and
PCA eigenvector also made it difficult to select a popula-
tion structure matrix. Therefore, more population struc-
ture matrices may be needed for further analysis to
locate the key associated SNPs.

A total of 144 DH-related SNPs were detected in four
locations by GLM, and 25 of them were detected in
more than two locations, which implied that even at dif-
ferent latitudes, heading date was functionally affected
by the same genes. Little attention has been given to the
associations of PW in cereal crops, but relationships
with grain yield and rice quality have been reported [44,
45]. The PW is also used as a main trait for association
analysis in rice [46]. However, in our study, too many
loci were associated with PW across all 12 chromosomes
(Fig. 4C, Supplementary Fig. 3-5C). Therefore, it was not
easy to identify the true related genes among these
SNPs. More association analysis models may be needed
to narrow down the candidate genes. In addition, PW is
a comprehensive trait consisting of many factors, such
as panicle length, number of grains, and grain weight,
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which adds to the difficulties of detecting associated
sites. A separate analysis of this trait may be needed for
further association studies.

From the Manhattan plots, it is obvious that DH
shows significant peak values by GLM: 2 peak values on
chromosome 2, 1 on chromosome 4 and 2 on chromo-
some 7 (Supplementary Fig. 7). The peak value of
chromosome 4 was located at 14,818,439 bp in the 5’
UTR of the LOC_Os04g25560 gene, which is referred to
as the OsSCP23 (putative serine carboxypeptidase
homologue) gene. The two peak values of chromosome
7 located at 8,832,791bp and 29,566,846 bp corre-
sponded to the intron variant LOC_Os07g15330 and the
intron variant LOC_Os07g49370, respectively. Both pu-
tative genes have unclear functions. Notably, these two
genes were located on chromosome 7, close to two re-
ported heading date genes, Ghd7 (LOC_Os07g15770)
and DTH7 (LOC_Os0749460), which are approximately
320kb and 50kb in length, respectively [47, 48]. In
chromosome 2, the location of the peak value is far from
the reported genes LOC_0s02g39710 and LOC_
0s02g49230 [49, 50]. It may be concluded that many
factors can cause false positive results in GWAS, so a
wider screening range is needed to choose the affected
genes around the associated SNPs. LD blocks will also
provide a reference criterion for the range. Various is-
sues need to be considered for further gene screening.

Conclusion

In this study, 450 accessions were used to perform
whole-genome resequencing, and 189,019 SNPs were
used for GWAS after filtering according to the MAF,
missing genotype rate and 7* value. Bonferroni correc-
tion was used to set the threshold of significantly associ-
ated SNPs to -Logio(P)>6.58. In total, 597 and 322
significantly associated loci were detected for the four
traits by GLM and MLM, respectively. After filtered, 22
larger effect or pleiotropic SNPs for the four traits were
used to identify candidate genes. Eleven SNPs were iden-
tified within coding regions, two of them were located in
3" UTR, eight in intron region and one in coding region.
The rest of 11 SNPs were found to be located in inter-
genic region.

All these candidate genes associated with the four yield
traits could be used for further gene identification or
fine mapping, and related SNPs will also provide guid-
ance for rice breeding in high-latitude areas.

Materials and methods

Plant materials

A collection of 450 temperate japonica rice varieties was
used as a GWAS panel, including landraces and cultivars
collected from Japan, North Korea, Russia, Heilongjiang
Province, Jilin Province and Liaoning Province in China,
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and other unknown origins (Supplementary Table 1).
Many landraces and foreign varieties have been intro-
duced into Heilongjiang Province of China in recent de-
cades. Moreover, a number of intermediate varieties
were added to the panel for further analyses.

Field cultivation and management

All materials were planted in the field in 2015. Four ex-
perimental fields were located at Wuchang (44.9°N,
127.2°E), Harbin (45.8°N, 126.6°E), Jiamusi (46.8°N,
1304°E) and Heihe (50.2°N, 127.5°E) in Heilongjiang
Province, and all these locations were used as paddy
fields for successive years. Wuchang is the most fertile
black land of China, with approximately 145 days above
the minimal temperature. At higher latitudes, Harbin
and Jiamusi have fewer days above the minimal
temperature. Heihe is not only the highest latitude of
the Chinese temperate zone but also the highest latitude
of the world where rice is cultivated. The growth season
in Heihe is less than 120 days. Experiments were con-
structed with a complete randomized design. Ten plants
of each accession were used for a single row with 13 cm
spacing within the plants and 30 cm spacing between the
rows. Field management was conducted normally for a
local paddy field.

Phenotypic evaluations and data statistics

The PH was evaluated before harvest and was measured
from ground to the highest panicle tip. The TI was
counted in each plant with panicles. The main panicle in
each plant was collected and weighed from the rachis
internode to obtain the PW. The mean of three plants
was calculated as the final value. The heading date was
noted when over 50% of plants in a row were heading,
and the number of days from sowing to heading was
used as DH for further analysis. Phenotype statistics and
distribution analyses were performed with the R/base
package. Analyses of variance for the four traits were
performed using the ImerTest package in R by Student’s
t test with a confidence level of a < 0.001 (https://cran.r-
project.org/web/packages/lmerTest/index.html).  Lines
and locations were treated as random effects, and traits
were treated as fixed effects with the formula Trait ~
(1|line) + (1|location) by Ime4/R (https://github.com/
Ime4/lme4). The broad-sense heritability (H?) of the four
traits was calculated by the following equation: H? = Vg/
(Vg + Ve/L), where Vg is the variance of genotypes, Ve is
the variance of environments, and L is the number of lo-
cations. Statistical plots were drawn with ggplot2/R
(http://had.co.nz/ggplot2/).

Genome resequencing and genotype filtering
Young leaves were collected from each accession, and
genomic deoxyribonucleic acid (DNA) was isolated by a
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rapid method to obtain high-quality total DNA (DOL
https://doi.org/10.21769/BioProtoc.1010106). Paired-end
libraries were constructed and sequenced on an Illumina
HiSeq sequencing system (Illumina, USA). The Nippon-
bare genome (MSU version 7.0) was used as a reference
genome. All reads were aligned to the reference genome
with the Burrows-Wheeler Alignment (BWA) tool [51].
After the alignment, quality control was performed
with SAMtools (Ver. 1.7), [52] and the Genome Ana-
lysis Toolkit was used for SNP calling (GATK, v3.4—
46). The UnifieldGenotyper of GATK was used for
multiple SNP calling [53]. Genotype imputation was
performed using Tassel (Version 5.0) with the LD
KNNi Imputation plugin [27].

Minor allele frequency and linkage disequilibrium

The MAF was calculated with Plink (Version 1.9, http://
www.cog-genomics.org/plink2/). After genotype imput-
ation, SNPs were filtered by Plink with thresholds of
MAF greater than 0.05 and a missing genotype rate
greater than 0.2. Whole-genome LD decay was estimated
by pairwise squared correlation coefficients (+°) between
SNPs in PopLDdecay [54]. The pairwise 7° value was cal-
culated when all accessions were divided into four
groups by population genetic analysis. The LD decay dis-
tances were determined where the average 1 dropped to
half of its maximum value. The SNPs were further fil-
tered according to the 7 value in Plink with parameters
--indep-pairwise 50 10 0.2.

Population genetic analyses

Population structure analysis, including group estima-
tion, best K value selection and population structure
plotting, was performed with fastSTRUCTURE (version
1.0) by the structure, chooseK and distruct plugins, re-
spectively [55]. The PCA and kinship matrix were calcu-
lated within TASSEL (Version 5.0) [27]. The first five
components were used for further association analysis.
The PCA plots of the first two components were drawn
with different groups predicted from K values. The kin-
ship heatmap was drawn with pheatmap/R (Version
1.0.12, https://cran.r-project.org/web/packages/
pheatmap/index.html). The clustering distance of rows
and columns used correlation as its parameter, and the
complete parameter was used for the clustering method.

Genome-wide association analysis

The GWAS analysis was carried out with TASSEL 5,
and GLM and MLM were used to detect significantly as-
sociated loci. After filtering by LD value, 189,019 SNPs
were used for association analysis with a threshold LOD
value of 6.58. Genotypes and phenotypes were used in
the GLM model with the first five components of PCA
as the population structure matrix. However, in the
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MLM, a kinship matrix was also added as a relatedness
covariation. The threshold values for associated SNPs
were obtained by the Bonferroni correction, which was
calculated as follows: -Log;o(P) = -Log10(0.05/189,019) ~
6.58. Manhattan plots and QQ plots were drawn by
CMplot/R (Version 3.6.2, https://cran.r-project.org/web/
packages/CMplot/).

Candidate gene identification

Loci that were detected in more than two locations or
by both methods were used for candidate gene identifi-
cation. The Nipponbare genome (MSU version 7.0,
http://rice.plantbiology.msu.edu/) annotation database
was used as a reference database. SnpEff (Version 4.3 T)
was used to annotate significantly associated SNPs [56].
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