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Abstract

pathways in this medicinal plant.

in roots, compared with those in leaves.

Flavonoid biosynthesis

Background: Alpinia oxyphylla Miq. is an important edible and medicinal herb, and its dried fruits are widely used
in traditional herbal medicine. Flavonoids are one of the main chemical compounds in A. oxyphylla; however, the
genetic and molecular mechanisms of flavonoid biosynthesis are not well understood. We performed transcriptome
analysis in the fruit, root, and leaf tissues of A. oxyphylla to delineate tissue-specific gene expression and metabolic

Results: In all, 885, 10.10, 8.68, 6.89, and 8.51 Gb clean data were obtained for early-, middle-, and late-stage fruits,
leaves, and roots, respectively. Furthermore, 50,401 unigenes were grouped into functional categories based on four
databases, namely Nr (47,745 unigenes), Uniprot (49,685 unigenes), KOG (20,153 unigenes), and KEGG (27,285
unigenes). A total of 3110 differentially expressed genes (DEGs) and five distinct clusters with similar expression
patterns were obtained, in which 27 unigenes encoded 13 key enzymes associated with flavonoid biosynthesis. In
particular, 9 DEGs were significantly up-regulated in fruits, whereas expression of 11 DEGs were highly up-regulated

Conclusion: The DEGs and metabolic pathway related to flavonoids biosynthesis were identified in root, leaf, and
different stages of fruits from A. oxyphylla. These results provide insights into the molecular mechanism of flavonoid
biosynthesis in A. oxyphylla and application of genetically engineered varieties of A. oxyphylla.
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Background

Alpinia oxyphylla Miq., a member of the Zingiberaceae
family, is an important plant species for traditional
Chinese medicine, which originates in the Hainan
Province and is widely cultivated in southern China [1].
The dried fruits of A. oxyphylla are regarded as a valuable
drug that has a long clinical history as a well-known
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constituent of the four southern Chinese medicines in
China [2, 3]. The fruits of A. oxyphylla are widely used in
the treatment of ulcerations, gastralgia, diarrhea, demen-
tia, diabetes, and Alzheimer’s disease [4—9]. Numerous
studies have reported that the fruits of A. oxyphylia are
rich in flavonoids, diarylheptanoids, terpenoids, volatile
oils, and steroids and their glycosides [10-13]. Among
these compounds, flavonoids and terpenoids are the main
active ingredients of A. oxyphylla fruits, which have been
found to exert various pharmacological activities [13].
Usually, there are variations in the distribution of sec-
ondary metabolites in different tissues of higher plants
[14-16]. The concentration of chemical constituents was
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comparable in roots and leaves of A. oxyphylla, but was
significantly higher in fruits [17]. In addition, the content
of chemical compounds in the fruits of A. oxyphylla har-
vested at different times indicates that the 45-day har-
vested fruit had the highest content of chemicals [17,
18] The metabolic processes and regulatory mechanisms
of these chemical compounds in different tissues and
fruits at different stages have not yet been elucidated.

The transcriptome is a complete set of RNA tran-
scripts in a cell at a specific developmental stage, and
provides information on gene expression and regulation
related to a variety of cellular processes including sec-
ondary metabolite biosynthesis [19, 20]. With the devel-
opment of next-generation sequencing, RNA sequencing
is an effective method for investigating the metabolic
pathways influenced by active ingredients and associated
gene expression in different tissues or samples, such as
flavonoid biosynthesis in Ampelopsis megalophylla [21],
terpenoids metabolism in ginseng roots [22] and poly-
saccharide and alkaloid content in Dendrobium [23]. To
date, there are no studies on the genetic modification of
A. oxyphylla either toward increased production of
secondary metabolites or biomass accumulation. There-
fore, it is important to explore the whole genome tran-
scriptome of A. oxyphylla to identify candidate genes
contributing to metabolic processes and regulatory
mechanisms.

In this study, the differentially expressed genes (DEGs)
and metabolic pathway related to flavonoids biosynthesis
were identified in root, leaf, and different stages of fruits
from A. oxyphylla. Therefore, the results of this study
may serve as a significant resource for developing genet-
ically engineered varieties of A. oxyphylla with improved
quality and yield.

Results

De novo assembly

The three tissue samples (fruits of different developmen-
tal stages, leaves, and roots) of A. oxyphylla were
sequenced using Illumina HiSeq 4000 which generated
approximately 29.50, 33.67, 28.93, 22.98, and 27.84 mil-
lion pair-end short reads with a length of 150bp for
early-fruits, middle-fruits, late-fruits, leaves, and roots,
respectively. After filtering out low-quality reads and
adapters, we obtained 8.85, 10.10, 8.68, 6.89, and 8.51
Gb clean data for each sample, and the clean data ratio
were estimated to be 99.84, 99.85, 99.84, 99.80, and
99.86%, respectively (Table 1). The lllumina reads have
been deposited in the Sequence Read Archive (SRA)
database at NCBI (https://www.ncbinlm.nih.gov/sra)
and thier accession numbers were SRX6686137,
SRX6686136, SRX6686135, SRX6686134, and
SRX6686133, respectively. De novo assembly of the
short reads generated 262,114 contigs and 140,126
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unigenes for the whole transcriptome, and N50 was cal-
culated to be 1567 bp and 1073 bp and the mean lengths
were 916bp and 658 bp. The average GC content of
contigs and unigenes for the A. oxyphylla transcriptome
were 43.76 and 43.78%, respectively (Table 1).

Functional annotation and classification

To investigate the function of unigenes, annotation was
performed based on four databases. A total of 50,401
unigenes were grouped into the databases, non-
redundant protein (Nr) (47,745 unigenes), Universal Pro-
tein (Uniport) (49,685 unigenes), EuKaryotic Ortholo-
gous Groups (KOG) (20,153 unigenes), and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (27,285
unigenes), respectively, while an additional 89,725 uni-
genes were not found in these databases. A detailed
comparison of the unigenes annotated by four different
databases are illustrated in Fig. 1.

GO analysis illustrated that 37,555 unigenes of A. oxy-
phylla were annotated into three categories: molecular
function (30,356), cellular component (20,203), and bio-
logical process (26,368), respectively (Supplementary
Fig. 1 in Additional file 1). The binding (19,730) and
catalytic activity (17,452) functional groups were the
most prominent molecular functions. A total of 20,153
unigenes of A. oxyphylla were further annotated and
grouped into 25 molecular families in KOG database
(Supplementary Fig. 2 in Additional file 1). These mo-
lecular families were grouped into four categories: infor-
mation storage and processing (5575), cellular processes
and signaling (7377), metabolism (6180), and poorly
characterized (5803). For KEGG analysis, 29,211 uni-
genes of A. oxyphylla had significant matches in the
database and were assigned to five primary categories:
cellular processes (3324), environmental information
processing (2571), genetic information processing
(5073), metabolism (13,599), and organismal systems
(4644) (Supplementary Fig. 3 in Additional file 1). A ma-
jority of unigenes were assigned to metabolism, and glo-
bal and overview maps had the highest number of
annotated unigenes (5005).

Differential gene expression analysis

There were 35,278 DEGs identified between the leaf vs
fruit sample, including 15,063 up-regulated and 20,215
down-regulated DEGs in fruit (Fig. 2a). A total of 34,846
DEGs were identified between root vs. fruit sample, in-
cluding 14,807 up-regulated and 20,039 down-regulated
DEGs in fruit (Fig. 2b). There were 19,776 DEGs be-
tween root vs. leaf sample, out of which 8797 were up-
regulated and 10,979 were down-regulated in leaf (Fig.
2¢). Using a Venn diagram, we compared the data sets
from the three comparison groups (leaf vs. fruit, root vs.
fruit, and root vs. leaf). In this comparison, 19,266 DEGs
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Table 1 Sequencing statistics and assembly summary for the fruits, leaves, and roots of A. oxyphylla
Samples Fruits Leaves Roots
Early Middle Late
Raw data
Total Reads 29,496,176 33,671,483 28,927,107 22,975,241 27,836,177
Total length (bp) 8,848,852,800 10,101,444,900 8,678,132,100 6,892,572,300 8,350,853,100
Read length (bp) 150 150 150 150 150
Clean data
Total Reads 29,448,034 33,622,040 28,882,070 22,928,184 27,796,543
Total length (bp) 8,834,410,200 10,086,612,000 8,664,621,000 6,878,455,200 8,338,962,900
(Clean data ratio 99.84% 99.85% 99.84% 99.80% 99.86%
Contigs
Total Number 262,114
Total Length (bp) 240,350,061
Mean Length (bp) 916
N50 (bp) 1567
N70 (bp) 939
N9 (bp) 352
GC Content 43.76%
Unigenes
Total Number 140,126
Total Length (bp) 92,262,411
Mean Length (bp) 658
N50 (bp) 1073
N70 (bp) 507
N90 (bp) 263
GC Content 43.78%

were identified as common (Fig. 2d) to all three groups.
A total of 16,213 DEGs were identified in both “leaf vs.
fruit” and “root vs. fruit” comparisons; 19,266 DEGs
were identified in both “leaf vs. fruit” and “root vs. leaf”
comparisons; while 19,266 DEGs were identified in both
“root vs. fruit” and “root vs. leaf” comparisons.

Cluster and KEGG enrichment analysis of DEGs

To investigate the expression trends of DEGs in different
tissues, we performed a cluster analysis using normalized
expression values from each individual replicate of five
different samples of A. oxyphylla. As a result, a total of
3110 DEGs and five distinct clusters with similar expres-
sion patterns were obtained, containing 606, 807, 954,
725, and 18 genes, respectively (Fig. 3a). As shown in
Fig. 3b, the expression level of cluster I (606) and cluster
IV (725) genes in fruits of A. oxyphylla were higher than
in roots and leaves, and the expression levels of cluster
I (807), cluster III (954), and cluster V (18) in fruits
were lower than in roots and leaves. The secondary me-
tabolites in fruits are higher than roots and leaves, for

Fig. 1 Venn diagram describing the unigenes annotated by four
different databases. The integration of unique similarity search
results against the NCBI non-redundant protein (Nr), Universal
Protein (Uniport), EuKaryotic Orthologous Groups (KOG), and Kyoto
Encyclopedia of Genes and Genomes (KEGG) databases
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instance, flavonoids in fruits are 1000 times higher than
roots and leaves [17]. Therefore, the DEGs related to
secondary metabolite biosynthesis should be in cluster I
and cluster IV. Signal pathway analysis of DEGs in the
five clusters showed that cluster I contains DEGs in-
volved in flavonoid biosynthesis, isoquinoline alkaloid
biosynthesis, and biosynthesis of secondary metabolites
(Fig. 4).

Through further comparative analysis, there were 35
and 44 DEGs related to secondary metabolites in root vs
fruit and leaf vs fruit, repetively (Table 2). These DEGs
were mainly distributed in phenylpropanoid, flavonoid
and isoquinoline alkaloid biosynthesis pathways. For
phenylpropanoid biosynthesis pathways, 14 DEGs were
up-regulated and 3 DEGs were down-regulated in root
vs fruit, and 19 DEGs were up-regulated, 5 DEGs were
down regulated in leaf vs fruit. It is noteworthy that all
the 8 DEGs mapped to flavonoids biosynthesis, and they
were both up-regulated in leaf vs fruit (Table 2). In
addition, 2 DEGs were up-regulated in anthocyanin bio-
synthesis, 3 DEGs were down-regulated in

diarylheptanoid and gingerol biosynthesis, 1 DEGs were
up-regulated and 2 DEGs were down-regulated in ses-
quiterpenoid and triterpenoid biosynthesis. In conclu-
sion, phenylpropanoid, flavonoids and isoquinoline
alkaloid biosynthesis related DEGs were significantly up-
regulated, while diarylheptanoid, gingerol, sesquiterpe-
noid, triterpenoid and carotenoid biosynthesis related
DEGs were down-regulated in fruits compared with
roots and leaves.

Candidate genes associated with flavonoid biosynthesis

Flavonoids are one of the main chemical compounds
found in A. oxyphylla and are important for evaluating
its quality [18]. To understand the regulation of flavon-
oid biosynthesis in A. oxyphylia, key regulatory genes in-
volved in the pathways for phenylpropanoid and
flavonoid biosynthesis were identified in this study.
Twenty-seven unigenes encoding 13 key enzymes observed
in this study were mostly associated with biosynthesis of fla-
vonoids. Furthermore, results of the microarray analysis of
tissue-specific transcriptomes demonstrated that the majority
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Table 2 Comparative analysis of gene expression regulation of secondary metabolites biosynthesis in fruits, roots and leaves

Group  ROOT Second maplD Description DEGs up-gene in down-gene
Fruit in fruit
rootvs  metabolism biosynthesis of other secondary ~ map00940 phenylpropanoid biosynthesis 35 14 3
fruit metabolites map00942 anthocyanin biosynthesis 2 0
map00945  stilbenoid, diarylheptanoid and 0 3
gingerol biosynthesis
metabolism of terpenoids and map00909  sesquiterpenoid and triterpenoid 1 2
polyketides biosynthesis
leaf vs  metabolism biosynthesis of other secondary  map00940 phenylpropanoid biosynthesis 44 19 5
fruit metabolites map00941 flavonoid biosynthesis 8 0
map00950 isoquinoline alkaloid biosynthesis 7 0
metabolism of terpenoids and map00906 carotenoid biosynthesis 0 5
polyketides

of genes encoding enzymes in the biosynthesis of flavonoids  regulated in fruits, whereas expression of 11 DEGs including
were expressed preferentially in the fruit of A. oxyphylla  flavonoid-3’, 5'-hydroxylase (F3'5H), hydroxycinnamoyl
(Fig. 5a). In particular, 9 DEGs, including chalcone synthase  transferase (HCT), Caffeoyl Co-A transferase (CCoAMT), 4-
(CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase = coumarate-CoA ligase (4CL) and phenylalanine ammonia-
(F3H), flavonol synthase (FLS), anthocyanidin synthase lyase (PAL), were highly up-regulated in roots. However, the
(ANS), dihydroflavonol-4-reductase (DFR), and anthocyani-  flavonoid biosynthesis associated genes exhibited low expres-
din reductase (ANR) unigenes, were significantly up-  sion levels in leaves, particularly 4CL and FLS displayed an

a b
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unigene017890 . PAL phenylsianing
unigene106999 C4H J, PAL(2)
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Fig. 5 Putative flavonoid biosynthesis pathway in A. oxyphylla. (@) Expression level of candidate A. oxyphylla unigenes coding for key enzymes
involved in flavonoid biosynthesis pathways. Green and red colors are used to represent low-to-high expression levels (mean centered log,-
transformed FPKM values). (b) Pathway for flavonoid biosynthesis. The numbers in brackets following each gene name indicate the number of A.
oxyphylla unigenes corresponding to that gene. Enzyme abbreviations are as follows: PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-
hydroxylase; CHS, chalcone synthase; CCOAMT, Caffeoyl Co-A transferase; 4CL, 4-coumarate-CoA ligase; CHI, chalcone isomerase; F3H, flavanone 3-
hydroxylase; F3'5'H, flavonoid-3', 5-hydroxylase; DFR, dihydroflavonol-4-reductase; ANR, anthocyanidin reductase; ANS, anthocyanidin synthase
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expression value of O (Supplementary Table 1 in
Additional file 2). In previous studies, flavonoids are found in
high concentrations in fruits, followed by roots, and are
found in the lowest concentrations in leaves [17]. Expression
analysis of flavonoid biosynthesis genes in the present study
also showed a similar trend. The putative flavonoid synthesis
pathway is shown in Fig. 5b. Flavonoids are synthesized via
the phenylpropanoid pathway and are converted from
phenylalanine to chalcone by the enzymes phenylalanine
ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), 4CL,
and CHS. CHI catalyzes the isomerization of chalcones into
flavanone. Flavanone can be converted either to flavonols
through the subsequent action of F3H and FLS, or to flavone
through the action of DFR and LAR. However, no unigene
coding for flavone synthase (FNS) was detected in the
transcriptome analysis. A similar situation has been re-
ported in the transcriptome sequencing of other plants
such as Sophora japonica, which may be attributed to the
fact that FNS genes are short fragments without sequence
similarity [24].

Discussion

There are about 250 species of Alpinia plants distributed
in tropical Asia [25]. The roots and fruits of Alpinia
plants are often used for medicinal applications [2, 26].
The capsular fruit of A. oxyphylla has been used as a
medicinal constituent or health supplement for centuries
as one of the four famous southern Chinese medicines
[2, 3]. Studies in natural product chemistry reveal that
the capsular fruit, root, and leaf contain flavonoids, ses-
quiterpenes, diarylheptanoids, essential oils, glycosides,
and steroids [14, 17]. The main chemical components of
A. oxyphylla flavonoids comprise of tectochrysin, izalpi-
nin, chrysin, and kaempferide, of which tectochrysin is
the second most abundant flavonoid concentrated in
fruits [11]. Therefore, flavonoids are one of the most im-
portant active chemical components in A. oxyphylla and
are important for evaluating its quality. However, the
molecular mechanism of tissue-specific flavonoid bio-
synthesis and accumulation in A. oxyphylla remains
largely unexplored.

In this study, we collected three tissue samples (fruits
of different developmental stages, leaves, and roots) of
A. oxyphylla and performed a comparative transcrip-
tome analysis, with a particular focus on flavonoid bio-
synthesis genes. To analyze if the gene expression of
biosynthetic genes also follow this pattern, high-
throughput transcriptome sequencing technology was
employed. Indeed, transcriptional analysis showed that a
large number of transcripts exhibited a tissue-specific
expression. The number of DEGs in the ‘leaf vs. fruit’
and ‘root vs. fruit’ comparison groups was higher than
that in the ‘root vs. leaf’ comparison group. These results
suggest that the medicinal properties and associated
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biological processes are concentrated in the fruits of A.
oxyphylla. To investigate the trends of DEGs in gene ex-
pression, we performed a cluster analysis using normal-
ized expression values from each individual replicate of
five different samples of A. oxyphylla. A total of 3110
DEGs were divided into five distinct clusters according
to their expression patterns. Further analysis showed
that only the cluster I of DEGs were related to flavonoid
biosynthesis, isoquinoline alkaloid biosynthesis and bio-
synthesis of secondary metabolites, and the expression
level in fruits was significantly higher than that in leaves
and roots. The enriched KEGG pathways results showed
that all the DEGs related to flavonoid biosynthesis were
up-regulated, and most of the DEGs involved in phenyl-
propanoid biosynthesis were also up-regulated, but the
DEGs related to stilbenoid, diarylheptanoid and gingerol
biosynthesis were down-regulated in fruits, indicating
that flavonoids were the main secondary metabolites.
The characterized flavonoids, including tectochrysin,
izalpinin, chrysin, and kaempferide, are found in greatest
concentrations in fruits, followed by roots, and are found
in the lowest concentrations in leaves [17]. Therefore,
the expression level of flavonoid related genes was con-
sistent with that of chemical components in different tis-
sues of A. oxyphylla.

The biosynthesis of flavonoids has been reported in
many other medicinal plants such as Astragalus mem-
branaceus var. mongholicus, Apocynum venetum, and
Eucommia ulmoides, and phenylpropanoid biosynthesis
is the common core pathway for the synthesis of flavo-
noids [27-29]. The first step in flavonoid biosynthesis is
regulated by enzymes (PAL, C4H, and 4CL) in the phe-
nylpropanoid pathway. The substrate 4-coumaroyl-CoA
is converted into chalcone by CHS in the first rate-
limiting step of flavonoid biosynthesis [30]. Next, differ-
ent flavonoid subgroups are synthesized through modifi-
cation of the molecular backbone, which is controlled by
flavonoid, flavone and flavonol biosynthesis enzymes
such as HCT, CCoAMT, CHS, CHI, F3H, F3',5'H, DFR,
ANR, and ANS [29-32]. In this study, homologous uni-
genes and the expression levels of these genes were in-
vestigated in samples of different tissues from A.
oxyphylia.

Interestingly, DEGs encoding CHS, CHI, F3H, FLS,
ANS, DER and ANR were highly expressed in the sam-
ples from fruits than the other two tissues, and DEGs
encoding PAL, 4CL, HCT, CCoAMT, and F3'5’H were
highly expressed in the samples from roots than the
other two tissues. It is noteworthy that PAL and 4CL
display high expression in roots, but the flavonoids are
not concentrated in the root [17]. It is speculated that in
the initial stages of flavonoid synthesis, phenylpropanoid
biosynthesis pathway initiates synthesis of substrates in
the root, part of which is converted into eriodictyol by
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HCT, CCoAMT, and F3'5’H, and the rest is transported
to the fruit, where it is modified and processed by CHS,
CHI, F3H, FLS, ANS, DFR, and ANR to form flavonoids,
flavones, and flavonols (Fig. 5). Therefore, it reasonable
to primarily utilize fruits of A. oxyphylla as components
of traditional medicine, rather than the root as done in
species such as A. officinarum. These results provide in-
sights into the molecular processes of flavonoid biosyn-
thesis in A. oxyphylla and offer a significant resource for
the application of genetic engineering to develop
varieties of A. oxyphylla with improved quality.

Conclusions

In this study, a total of 3110 DEGs and five distinct clus-
ters with similar expression patterns were obtained, in
which 27 unigenes encoded 13 key enzymes associated
with flavonoid biosynthesis. In particular, 9 DEGs were
significantly up-regulated in fruits, whereas expression of
11 DEGs were highly up-regulated in roots, compared
with those in leaves. In summary, The DEGs and meta-
bolic pathway related to flavonoids biosynthesis were
identified in root, leaf, and different stages of fruits from
A. oxyphylla. These results provide insights into the mo-
lecular mechanism of flavonoid biosynthesis in A. oxy-
phylla and application of genetically engineered varieties
of A. oxyphylia.

Methods

Plant material

A. oxyphylla were collected from cultivated fields in
Baisha County, Hainan Province, China (N.109.437569,
E.19.19680). The sample was identified by Kun Pan and
deposited at the Key Laboratory of Tropical Transla-
tional Medicine of the Ministry of Education, Hainan
Medical University, Haikou, Hainan, China. The speci-
men accession number was CHMUO0123. The fruits were
sampled at the following three developmental stages:
early-fruit (15 days), middle-fruit (30 days) and late-fruit
(45 days). Fresh A. oxyphylla fruits were obtained from
the three plants simultaneously during each phase. Then,
the materials of same phase were mixed for further ex-
periments. After harvesting the fruit, the leaves and
roots were obtained from the same plant. All the sam-
ples of A. oxyphylla were immediately frozen in liquid
nitrogen and stored at — 80 °C prior to processing.

RNA sequencing and De novo assembly

The total RNA was extracted from different plant tissues
using the RNAprep Pure Plant Kit (Tiangen, Beijing,
China) as per the standard protocol [33]. The RNA con-
centration and quantity were assessed using the Nano-
drop 2000 spectrometer (Thermo Fisher Scientific,
Wilmington, DE, USA) and Agilent Bioanalyzer 2100
system (Agilent Technologies, Santa Clara, CA, USA). A
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Stranded Total RNA Library Prep Kit (Illumina, Inc.,
San Diego, AR, USA) was used for cDNA library con-
struction and normalization. The cDNA library was se-
quenced using Illumina HiSeq 4000 as per standard
protocol. Raw reads were filtered by removing the
adapter and low-quality sequences to produce high-
quality clean reads and the reads were assembled to gen-
erate unigene libraries. Trinity software (v.2.8.5, the
Broad Institute, Cambridge, MA, USA) was used to as-
semble the clean data into unigenes according to a basic
group quality score of more than Q30 [34].

Functional annotation

Function annotation of the assembled unigenes were ob-
tained from public databases NCBI Nr (http://www.ncbi.
nlm.nih.gov), Uniport (https://www.uniprot.org/), KOG
(ftp://ftp.ncbi.nih.gov/pub/ COG/KOG), and KEGG clas-
sifications (http://www.genome.jp/kegg/).

Analysis of DEGs

Unigene expression level was calculated using the frag-
ments per kilobase of transcript per million mapped
(FPKM) method. The DEGs were screened using the
edgeR package with the threshold set as described previ-
ously [35]. GO and KEGG enrichment analysis of the
identified DEGs was performed using the GOAtools ver-
sion 0.5.9 (https://github.com/tanghaibao/Goatools) and
KOBAS version 2.0.12 with default settings, respectively.
The corrected p-value for identifying significant differ-
ences in expression was calculated and adjusted by the
hypergeometric Fisher exact test. GO terms with a cor-
rected p-value<0.05 were considered to be significantly
enriched. Next, we employed the same method for
KEGG pathway functional enrichment analysis of DEGs.
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