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Abstract

Background: Intramuscular fat (IMF) content is an important factor in porcine meat quality. Previously, we showed
that miR-34a was less abundant in liver tissue from pigs with higher backfat thickness, compared to pigs with lower
backfat thickness. The purpose of this present study was to explore the role of miR-34a in adipogenesis.

Result: Bioinformatics analysis identified Acyl-CoA synthetase long chain family member 4 (ACSL4) as a putative target
of miR-34a. Using a luciferase reporter assay, we verified that miR-34a binds the ACSL4 mRNA at the 3'UTR. To examine
the role of the miR-34a-ACSL4 interaction in IMF deposition in the pig, mRNA and protein expression of the ACSL4
gene was measured in primary intramuscular preadipocytes transfected with miR-34a mimic and inhibitor. Our results
showed that ACSL4 is expressed throughout the entire differentiation process in pig preadipocytes, similar to the
lipogenesis-associated genes PPARy and aP2. Transfection with miR-34a mimic reduced lipid droplet formation during

adipocytes by targeting ACSL4.
Keywords: IMF, miR-34a3, ACSL4, Pig

adipogenesis, while miR-34a inhibitor increased lipid droplet accumulation. Transfection with miR-34a mimic also
reduced the mRNA and protein expression of ACSL4 and lipogenesis genes, including PPARy, aP2, and SREBP-1C, but
increased the expression of steatolysis genes such as ATGL and Sirt1. In contrast, the miR-34a inhibitor had the opposite
effect on gene expression. Further, knockdown of ACSL4 decreased lipid droplet accumulation.

Conclusions: Our results support the hypothesis that miR-34a regulates intramuscular fat deposition in porcine

Background

Intramuscular fat (IMF) content is a primary indicator of
porcine meat quality [1]. An increase in IMF content
can improve meat flavor [2]. However, substantial efforts
have been made to improve production efficiency and
select for lean growth, both of which impact IMF nega-
tively. Selection for enhanced IMF has therefore become
an important focus in pork production.
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High-throughput methods, such as genome-wide associ-
ation studies and transcriptome expression profiling, have
been used to search for genes that potentially affect fat de-
position in swine. Many genes associated with an extreme
capacity for IMF deposition have been identified [3-9]. In
addition to the multiple genes that influence adipogenesis,
IMF is also likely to be under the control of post-
transcriptional regulatory factors such as microRNAs.
MicroRNAs are small non-coding RNA molecules that
regulate gene expression by targeting mRNA transcripts
for cleavage or translational inhibition [10, 11]. miRNAs
play important roles in various biological processes, in-
cluding cell differentiation, proliferation and apoptosis
[12], organ development [13], lipid metabolism [14], and
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tumorigenesis [15]. Emerging evidence suggests that miR-
NAs are also involved in adipogenesis. For example, miR-
196a induces preadipocyte differentiation by increasing
adipocyte marker expression, lipid accumulation, and tri-
glyceride content [16]. miR-27a-5p increases fat depos-
ition in steers partly by targeting the calcium-sensing
receptor (CASR) [17]. miR-30e regulates adipocyte differ-
entiation by targeting the low-density lipoprotein
receptor-related protein 6 [18]. miR-155, miR-130, and
miR-210 inhibit adipocyte formation by targeting the key
adipogenic transcriptional factors PPARy, C/EBPa, and
TCF712 in the Wnt/B-catenin signaling pathway [19, 20].
We previously identified potential miRNAs regulators of
porcine fat deposition by using high-throughput sequen-
cing to examine the transcriptomes in animals with ex-
treme differences in backfat thickness. One of the
miRNAs, miR-34a, is markedly less abundant in animals
with higher backfat thickness (H group) compared with
those with lower backfat thickness (L group) [9]. This re-
sult suggests that miR-34a may play important roles in
porcine adipogenesis.

MicroRNA-34a has attracted interest recently because
of its ability to modulate a myriad of oncogenic functions
in different cancers [21-27]. Not only does it play a role
in cancer metastasis [28, 29] and drug resistance [30], it is
now being evaluated as a diagnostic as well as a prognostic
biomarker [31-33]. In addition, a miR-34a inhibitor has
been identified that may effectively protect against
sevoflurane-induced hippocampal apoptosis by targeting
Wntl and activating the Wnt/B-catenin pathway [34].
miR-34a is involved in the pathogenesis of non-alcoholic
fatty liver disease [35] and is down-regulated in genetically
improved farmed tilapia (Oreochromis niloticus) when
they are fed a high-fat diet [36]. However, little is known
about the role of miR-34a in porcine adipogenesis.

To explore the function of miR-34a in swine, we used
bioinformatics analyses to predict its interactions, and
conducted experiments to test our predictions using pri-
mary preadipocytes. The results provide insight into the
ways in which non-coding RNAs affect IMF in pigs.

Results

Biological functions of miR-34a based on target analysis
To explore the possible biological functions of miR-34a,
the TargetScan and miRDB algorithms were used to pre-
dict miR-34a targets. Seven hundred fifty-four and five
hundred forty-seven targets were predicted with Tar-
getScan and miRDB, respectively (Supplementary Tables
S1 and S2). Two hundred ninety-eight genes overlapped
with the targets (Supplementary Table S3), and were ex-
amined for potential biological roles using Gene Ontol-
ogy (GO) term enrichment and Kyoto Encyclopaedia of
Genes and Genomes (KEGG) pathway analyses. Several
molecular function categories were enriched in the GO
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analysis (Fig. la). Fatty acid biosynthesis and the phos-
phatidylinositol signaling system were significantly
enriched in the KEGG analysis (Fig. 1b).

The mature miR-34a sequence is highly conserved in
various species, including human, mouse, and rat
(Fig. 2a). miRNA target prediction identified ACSL4 as a
potential target gene of miR-34a, with an estimated free
energy of —29.2kcal/mol for the interaction between
them. ACSL4 encodes acyl-CoA synthetase long chain
family member 4, which generates fatty acyl-CoA esters
from long-chain fatty acids. The putative target site in
the ACSL4 mRNA is shown in Fig. 2b.

Interaction between miR-34a and ACSL4

To verify that ACSL4 is a target of miR-34a, we tested
their ability to interact in 293 T cells using a dual-
luciferase reporter system. miR-34a mimic significantly
decreased luciferase activity generated by the wild-type
ACSL4 reporter vector, compared to the negative control
(P<0.01). In contrast, luciferase activity was not affected
when a mutated version of the putative miR-34a inter-
action region was transfected into the cells (Fig. 3a). These
results support the hypothesis that ACSL4 mRNA is tar-
geted by miR-34a. We further detected the expression of
ACSL4 in muscle tissue, which revealed a higher expres-
sion in the H group than that in the L group (Fig. 3b).

Expression of ACSL4 during porcine preadipocyte
differentiation

To examine whether ACSL4 is a potential contributor to
IMF deposition, expression of ACSL4 was measured by
qRT-PCR during preadipocyte differentiation (0, 2, 4, 6,
and 8 days after induction). Other marker genes that are
widely used in studies of lipid metabolism [37] such as
PPARy, aP2, ATGL, and Sirtl were also included. As
shown in Fig. 4, expression of ACSL4 mRNA gradually
increased after adipocytes were induced to differentiate.
Expression peaked at 4 days, the time at which a major-
ity of preadipocytes differentiated into mature adipo-
cytes, and then declined steadily (Fig. 4). Interestingly,
similar expression patterns were also observed for lipo-
genesis transcripts such as PPARy and aP2 (Fig. 4). In
contrast, expression of the steatolysis genes ATGL and
Sirtl increased steadily during preadipocyte differenti-
ation (Fig. 4). The results are consistent with the hypoth-
esis that ACSL4 is involved in lipogenesis.

miR-34a inhibits lipogenesis by targeting ACSL4

The results of the dual luciferase assay described earlier
strongly suggested that miR-34a and ACSL4 mRNA
interact. To test if miR-34a affects lipid metabolism, a
mimic and an inhibitor of miR-34a were transfected into
porcine preadipocytes. As shown in Fig. 5a, the miR-34a
mimic was detected after transfection, with the highest
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levels observed after 48 h. We then used qRT-PCR and
western blotting to measure mRNA and protein expres-
sion of ACSL4 and other genes related to lipid metabol-
ism 48 h after transfection of preadipocytes with miR-
34a mimic and inhibitor (Fig. 5b, ¢, d). As expected,
transfection with miR-34a mimic significantly sup-
pressed mRNA and protein expression of ACSL4 and
other lipogenesis genes, including PPARy, aP2, and
SREBP-1C, and increased expression of steatolysis genes,
such as ATGL and Sirtl. In contrast, miR-34a inhibitor
had the opposite effect on the mRNA and protein ex-
pression of lipogenesis and steatolysis-related genes, sug-
gesting that miR-34a inhibits lipogenesis by targeting

ACSL4. Consistent with this result, Oil Red O and trigly-
ceride (TG) quantification assays revealed that the miR-
34a mimic significantly decreased lipid droplet numbers,
while the miR-34a inhibitor increased them (Fig. 5e, f).

Silencing of the ACSL4 gene decreases accumulation of
lipid droplets

RNA interference was used to investigate the function of
ACSL4 in adipogenesis. Three si-ACSL4 fragments (sil-
ACSL4, si2-ACSL4, si3-ACSL4) were designed (Supple-
mentary Table S4), and si3-ACSL4 was found to have
the highest interference effect (Fig. 6a, b, c). Further, Oil
Red O and TG quantification assays showed that
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knockdown of ACSL4 reduced lipid droplet accumula-
tion (Fig. 6d, e), similar to the effect of miR-34a mimic
(Fig. 5e, f). Taken together, these results demonstrated
that miR-34a negatively regulates adipogenesis in por-
cine adipocytes by targeting ACSL4.

Discussion

Numerous miRNAs regulate adipogenesis by interacting
with transcription factors or important signaling molecules
that are involved in adipocyte differentiation [38]. Based on
our previous studies, miR-34a is less abundant in liver tissue
from pigs with higher backfat thickness, compared with pigs
with lower backfat thickness [9]. Bioinformatics analysis sug-
gested that potential miR-34a targets functioned in MAPK
signaling, regulation of the actin cytoskeleton, galactose me-
tabolism, and fatty acid biosynthesis (Fig. 1). The potential
involvement of miR-34a in fatty acid biosynthesis, in com-
bination with the high expression of miR-34a in pigs with
low backfat thickness, led us to hypothesize that miR-34a
functions in lipid metabolism.

In this study, we investigated the mechanism by which
miR-34a affects lipid metabolism in pigs. Sequence ana-
lysis suggested that miR-34a targets the ACSL4 mRNA
within the 3'UTR (Fig. 2). In a dual luciferase assay,
overexpression of miR-34a inhibited luciferase activity
generated by wild-type ACSL4, but did not affect activity
of a construct containing a mutated version of the puta-
tive miR-34a interaction region (Fig. 3a). The porcine
ACSL4 gene is a member of the long-chain acyl-CoA
synthetase (ACSL) family of enzymes that catalyze the

addition of a coenzyme-A (CoA) group to a fatty acid to
form fatty acyl-CoAs [39, 40]. Five ACSL isoforms can each
activate and channel various fatty acids to different metabolic
fates [40]. Proposed functions of ACSL4 include intracellular
lipid storage [41], cholesterol transport from the endoplasmic
reticulum into the mitochondria [42], and regulation of arachi-
donic acid and its metabolites [43—46]. In addition, ACSL4
polymorphism is associated with IMF content and fatty acid
composition in different pig breeds [47—49].

To verify that ACSL4 plays a role in the regulation of
lipid metabolism, we measured the expression of ACSL4
during porcine preadipocyte differentiation. ACSL4
mRNA was expressed throughout the entire differenti-
ation process, and abundant in middle term after adipo-
cyte differentiation (Fig. 4). By studying adipocyte
differentiation in vitro using various preadipose cell lines
and primary preadipocytes, it has been possible to dis-
sect the molecular and cellular events that occur during
the transition from undifferentiated fibroblast-like prea-
dipocytes into mature round fat cells [50]. As with pri-
mary human, mouse, and rat preadipocyte cell lines,
primary pig preadipocytes also proliferate and differenti-
ate, becoming adipocytes with lipid droplets in vitro
(Supplementary Figure S1) [51]. We also analyzed the
expression of PPARy and aP2, which are prominent adi-
pocyte marker genes, and ATGL lipases and deacetylase
Sirtl [52]. Similar expression patterns were observed for
ACSL4 and lipogenesis-associated genes, while the ex-
pression patterns for the steatolysis genes were different
(Fig. 4). Also, the expression of ACSL4 mRNA in muscle
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tissue is higher in the H group than that in the L group transfected into porcine preadipocytes. As expected,
(Fig. 3b). This suggests that ACSL4 is involved in pig  miR-34a mimic decreased the number of lipid droplets,
lipogenesis. resulting in lower lipid content levels compared to cells

To further investigate whether interaction between transfected with NC. In contrast, miR-34a inhibitor in-
miR-34a and ACSL4 mRNA plays a role in lipid depos-  creased the lipid droplet number, resulting in higher
ition, miR-34a mimic, inhibitor, and NC were lipid content levels (Fig. 5e, f). Our results are consistent
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with one previous study [53], but are inconsistent with a
recent report that overexpression of miR-34a increases
lipid deposition in mouse liver and HepG2 cells [54].
The discrepancy may be due to differences between spe-
cies or cell type. A particular miRNA may play different
roles at different developmental stages within one cell
type, or at the same developmental stage in different cell
types [16]. We also investigated whether miR-34a regu-
lates the expression of lipogenesis- and steatolysis-
related genes. As shown in Fig. 5, miRNA-34a mimic de-
creased the expression of ACSL4 and lipogenesis genes
(PPARy, aP2 and SREBP-1C) and increased expression
of steatolysis genes (ATGL and Sirtl). In contrast, the
miR-34a inhibitor had the opposite effect on gene ex-
pression. Using RNA interference, we investigated the
function of ACSL4 in adipogenesis. The results
showed that knockdown of ACSL4 reduced lipid
droplet accumulation (Fig. 6d, e), similar to the effect
of miR-34a mimic (Fig. 5e, f). Taken together, the re-
sults demonstrate that miR-34a negatively regulates
adipogenesis in porcine adipocytes by targeting
ACSL4. A checklist for microRNA-target interactions
(MTI) is presented in Table 1, following the recom-
mended standards for an MTI report [55].

Conclusions

In this study, we investigated the mechanism by which
miR-34a affects lipid metabolism in pigs. First, we dem-
onstrated that miR-34a binds the ACSL4 mRNA at the
3UTR using a luciferase reporter assay. We then showed
that transfection of porcine preadipocytes with miR-34a
mimic reduced lipid droplet formation, while transfec-
tion with miR-34a inhibitor increased the accumulation
of lipid droplets. Further, knockdown of ACSL4 also de-
creased lipid droplet accumulation. Together, our data
support the conclusion that miR-34a negatively regulates
lipogenesis in porcine adipocytes by targeting ACSL4.

Methods

miRNA target gene prediction and functional analyses
miRNA targets were predicted using TargetScan 7.2 (http://
www.targetscan.org/) [56] and miRDB (http://mirdb.org) [57].
The free energy of the miR-34a-ACSL4 interaction was calcu-
lated using RNAhybrid 2.2 (https://bibiserv.cebitec.uni-biele-
feld.de/rnahybrid) [58]. GO term and KEGG enrichment
analyses for overlapping target genes were performed using
the R package ‘clusterProfiler’ [59], with p-values calculated
using right-sided hypergeometric tests. Figures were prepared
using the R package ‘ggplot2’ [60].
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Table 1 Checklist for experimentally validated miRNA-target interaction (MTI)

[tem

Results

1. miRNA gene name (Entrez ID)
2. Target gene name (Entrez ID)
3. Species name (Species ID)
4. Genomic location of MTI Nucleotide sequence
Location according to Ensembl
Location within a part of a gene
Method for experimental validation
Cell lines
5. Sequence variants within MTI

6. Associated phenotype

miR-34a (100316602)

ACSL4 (448980)

Sus scrofa domesticus (9825)

5'CACTGCC

X:89761656-89761650

1934-1940 (location within 3'UTR)

Luciferase reporter assay, gPCR, western blot

293T cell lines, porcine primary intramuscular preadipocytes
None

Adipogenesis

Note:Checklist was prepared according to guidelines for the miRNA target reporting standardization [55]

Dual luciferase reporter assay

The mature miR-34a sequence was retrieved from miR-
Base (http://www.mirbase.org/). The ACSL4 3’'UTR wild
type (WT) and mutated (MUT) sequences were cloned
into pmirGLO vectors using the Sacl and Sall restriction
sites. Primers for the luciferase reporter assay are listed
in Supplementary Table S5. Two hundred ninety-three T
cells in logarithmic growth phase were seeded into the
wells of a 96-well plate. Upon reaching 80% confluence,
the cells were co-transfected with ACSL4-3'UTR-Wild
plasmid and miR-34a mimic using Lipofectamine 2000.
ACSL4-3UTR-Wild + miR-34a mimic NC, ACSL4—
3’UTR-Mut + miR-34a mimic, and ACSL4-3'UTR-Mut +
miR-34a mimic NC were also transfected for compari-
son. After 48 h, luciferase activity was determined with
the dual-luciferase reporter assay system (Promega,
USA). All luciferase assays were performed in triplicate
and the experiment was performed three times.

Isolation, culture, differentiation, and transfection of
porcine primary intramuscular preadipocytes

Six 7-day old Yorkshire were purchased from the experi-
mental farm at the Chinese of Academy Agricultural Sci-
ences. Animals were humanely euthanized by electrical
stunning. The longissimus dorsi muscle (LD) was re-
moved from piglets under sterile conditions. Visible con-
nective tissue was removed, and the remaining tissue
was finely minced. Following the protocol described in a
previous study [53], preadipocytes were isolated using
differential rate adherence by subjecting the tissues to
digestion for 2h with 0.1% type II collagenase. The
digested sample was filtered aseptically through a
200 um nylon mesh filter to isolate cells. The filtered
and washed cells were seeded at a density of 2.5 x 10°
cells per 35-mm culture dish in DMEM/F12 medium
with 10% fetal bovine serum (Hyclone, Logan, UT,
USA), supplemented with penicillin (100 U/ mL) and
streptomycin (100 U/ mL). The cells were incubated at

37°C under a water-saturated atmosphere containing
95% air and 5% CO,. After 2 h, the dishes were washed
with a PBS solution 2-3 times to remove nonadherent
cells and to obtain the precursor intramuscular-muscle
fat cells. Subsequently, fresh complete culture solution
was added and replaced every 2 days. After 2 days, the
majority of cells had adhered to the culture dish walls
(Supplementary Figure S1A). The number of adherent
cells continued to increase with time, and spreading cells
had triangular or fusiform shapes. After 8 days, cells had
formed a single layer and were morphologically similar to
primary cells (Supplementary Figure S1B). To examine
IMF deposition and droplet morphology in cultured intra-
muscular adipocytes, cells were collected 2, 4, 6, and 8
days after induction of differentiation and then stained
using Oil Red O. After 2 days of induction, a small num-
ber of lipid droplets were detected (Supplementary Figure
S1C). The abundance of lipid droplets increased gradually
from 4 to 6days (Supplementary Figure S1D, E), and a
large number of lipid droplets were apparent at 8 days
(Supplementary Figure S1F). The results showed that the
isolated cells were intramuscular preadipocytes.

When the cells reached 80% confluence, they were di-
vided into two groups. The first group was induced to
differentiate from preadipocytes to adipocytes. The dif-
ferentiation medium (AIM; adipocyte-inducing medium)
consisted of base medium supplemented with 0.5 mM
isobutyl methylxanthine (IBMX, Sigma-Aldrich, St.
Louis, MO, USA), 1.0 uM dexamethasone (DEX, Sigma,
USA) and 1.0 pg/mL insulin (INS, Sigma). After addition
of differentiation medium, cells were collected at 0, 2, 4,
6, and 8 days. The second group was used for overex-
pression and knockdown experiments. These cells were
starved for 12h in Opti-MEM (Gibco, USA), and then
transfected with miR-34a mimic (artificially synthesized
miR-34a mimic, 100 nM), mimic negative control (NC,
100 nM), inhibitor (anti-miR-34a, 100 nM), inhibitor NC
(100 nM) and sil-ACSL4 (100 nM), si2-ACSL4 (100
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nM), si3-ACSL4 (100 nM). ACSL4 siRNA sequences
were designed by Shenggong technology Co., LTD. All
sequences are listed in Supplementary Table S4. Trans-
fection was conducted with Lipofectamine 2000 (Invitro-
gen, USA) according to manufacturer’s protocol.
Transfected preadipocytes were cultured in 6-well plates
for 2 days in the presence of AIM, followed by treatment
with insulin alone for 1 more day.

Oil red O staining

Cells were washed three times with phosphate-buffered
saline (PBS) and then fixed in 4% paraformaldehyde for
30 min. The cells were washed twice with deionized
water and stained with 60% Oil Red O (solvent: isopro-
panol, 0.5g Oil Red powder/100 mL). The cells were
protected from light for 30 min, washed three times with
PBS, and examined under a microscope.

Determination of triglyceride

TG levels were quantified using a GPO-PAP enzyme
assay (Jiancheng, China). The cells were digested with
achromatic trypsin and centrifuged for 10 min at a speed
of 1000 rpm. The pellet was washed twice with PBS, and
the cells were resuspended at 10°/mL with ultrapure
water. The cells were disrupted by sonication (3-5s
bursts, 3—5 repetitions) or manually while being chilled
in an ice bath. The cells were transferred into 96 well
plates and divided into three groups. The blank group
(BG) was added into 2.5 uL. ddH,O and 250 uL. working
fluid. The standard group (SG) was added into 2.5 pL
TG (2.26 mmol/L) and 250 pL working fluid. The experi-
mental group (EG) was added into 2.5pL cells and
250 uL. working fluid. The reactions were mixed and in-
cubated at 37 °C for 10 min. Optical density (absorbance)
was measured at 510 nm for each well using a micro-
plate reader. TG (mmol/L)=(ODgg-ODgg)/(ODsg-
ODgg) * calibrator concentration (mmol/L).

Quantitative real-time PCR

Total RNA was extracted from harvested cells using
TRIzol reagent (TaKaRa, Dalian, China), according to
the manufacturer’s instructions. RNA concentration was
measured using a NanoDrop 2000 (Thermo, Waltham,
MA, USA). cDNA was synthesized using the TaKaRa
PrimeScript RT reagent kit with gDNA Eraser. Quantita-
tive PCR was conducted using TaKaRa SYGB Premix EX
Taq (Tli RNaseH Plus, CA). For miRNA analysis, the
One Step PrimeScript miRNA cDNA Synthesis Kit
(TaKaRa) and the SYBR PrimeScriptTM miRNA RT-
PCR Kit (TaKaRa) were used. Gene expression was nor-
malized to S-actin, and the U6 small RNA was used as
the internal reference for miRNA measurements. In
real-time quantitative PCR, every reaction was per-
formed in triplicate. Levels were calculated using the
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relative quantification (2722€Y method [61]. All primers
are listed in Supplementary Table S6.

Western blotting

Cultured cells were washed two times with PBS, digested with
0.25% trypsin and then centrifuged at 1000 rpm for 15 min.
The cells were homogenized in radioimmunoprecipitation
assay (PIPA) lysis buffer (Beyotime, Shanghai, China) with
phenylmethane sulfonyl fluoride (PMSF, Beyotime, Shanghai,
China). Total protein was extracted from the supernatants
after centrifugation at 12,000 rpm for 10 min. Protein concen-
tration was determined using a BCA Protein Assay Reagent
Kit (Beyotime, Shanghai, China). A protein sample of 50 ug
was separated by SDS-PAGE, transferred to polyvinylidene
fluoride (PVDF) membranes (Beyotime, Shanghai, China), and
sealed overnight in 5% sealant. The membranes were washed
three times for 10 min with 10 x TBST, blocked with Dif-
coTM skim milk for 1 h at room temperature, and then incu-
bated at 4°C overnight with the following rabbit primary
antibodies: anti-ACSL4 polyclonal antibody (1:1000, ABclonal,
Wouhan, China), anti-Sirtl polyclonal antibody (1:1000, ABclo-
nal, Wuhan, China), anti-ATGL polyclonal antibody (1:1000,
ABclonal, Wuhan, China), anti-aP2 polyclonal antibody (1:
1000, ABclonal, Wuhan, China), anti-SREBP-1c polyclonal
antibody (1:1000, ABclonal, Wuhan, China), anti-PPARYy poly-
clonal antibody (1:1000, ABclonal, Wuhan, China), and anti-
GAPDH polyclonal antibody (1:1000, ABclonal, Wuhan,
China). After three washes with 10 x TBST, the second anti-
body (IgG 1:5000, ABclonal, Wuhan, China), conjugated with
horseradish peroxidase, was added and the reaction was incu-
bated at 37°C for 1h. Binding was detected using an ECL
chemiluminescence kit (Beyotime, Shanghai, China). A gel im-
aging instrument (Vilber Lourmat fusion FX 7 Spectra,
France) was used to scan the immunoblots, and an image ana-
lysis application (FUSIONCAPT, France) was used to deter-
mine the relative density of each band. The results are
presented as the ratios of the optical densities of targeted pro-
teins to those of GAPDH.

Statistical analysis

Statistical analyses were performed using SAS 9.4. All
experiments were conducted in triplicate, and results are
presented as means + SE. Multiple comparisons were
assessed with a one-way analysis of variance followed by
Dunnett’s tests. P-values <0.05 were considered to be
statistically significant.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512863-020-0836-7.

Additional file 1: Supplementary Figure S1. Identification of porcine
primary intramuscular preadipocytes. (A-B) Morphology of primary
intramuscular preadipocytes observed under an inverted microscope (x
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100) after cultivation for (A) 2 days and (B) 8 days. (C-F) Morphological
changes and lipid accumulation in intramuscular adipocytes observed by
Oil Red O staining (x 400). Cells were collected at (C) 2, (D) 4, (E) 6, and
(F) 8 days after induction of differentiation.

Additional file 2: Supplementary Table S1. miR-34a target genes pre-
dicted using TargetScan. Supplementary Table S2. miR-34a target
genes predicted using miRDB. Supplementary Table S3. miR-34a target
genes predicted both by TargetScan and miRDB. Supplementary Table
S4. The sequences of small interfering RNAs (siRNAs) specifically targeting
ACSL4. Supplementary Table S5. Primers used for luciferase reporter
assay. Supplementary Table S6. Primers used for real-time quantitative
PCR.
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