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A simple method to estimate the in-house
limit of detection for genetic mutations
with low allele frequencies in whole-exome
sequencing analysis by next-generation
sequencing
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Abstract

Background: Next-generation sequencing (NGS) has profoundly changed the approach to genetic/genomic
research. Particularly, the clinical utility of NGS in detecting mutations associated with disease risk has contributed
to the development of effective therapeutic strategies. Recently, comprehensive analysis of somatic genetic
mutations by NGS has also been used as a new approach for controlling the quality of cell substrates for
manufacturing biopharmaceuticals. However, the quality evaluation of cell substrates by NGS largely depends on
the limit of detection (LOD) for rare somatic mutations. The purpose of this study was to develop a simple method
for evaluating the ability of whole-exome sequencing (WES) by NGS to detect mutations with low allele frequency.
To estimate the LOD of WES for low-frequency somatic mutations, we repeatedly and independently performed
WES of a reference genomic DNA using the same NGS platform and assay design. LOD was defined as the allele
frequency with a relative standard deviation (RSD) value of 30% and was estimated by a moving average curve of
the relation between RSD and allele frequency.

Results: Allele frequencies of 20 mutations in the reference material that had been pre-validated by droplet digital
PCR (ddPCR) were obtained from 5, 15, 30, or 40 G base pair (Gbp) sequencing data per run. There was a significant
association between the allele frequencies measured by WES and those pre-validated by ddPCR, whose p-value
decreased as the sequencing data size increased. By this method, the LOD of allele frequency in WES with the
sequencing data of 15 Gbp or more was estimated to be between 5 and 10%.

Conclusions: For properly interpreting the WES data of somatic genetic mutations, it is necessary to have a cutoff
threshold of low allele frequencies. The in-house LOD estimated by the simple method shown in this study
provides a rationale for setting the cutoff.
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Background
Compared with conventional Sanger sequencing, next-
generation sequencing (NGS) technologies have enabled
a more rapid and easier assessment of variants/muta-
tions across the entire genome [1–3]. Therefore, NGS
technologies have largely replaced microarray-based
methods in many omic studies. Additionally, this ex-
tremely powerful technology for detecting genetic varia-
tions has caused a paradigm shift in medicine and has
the potential for use in precision medicine (also known
as “personalized medicine” or “genomic medicine”)
based on individual genetic risk to disease [4, 5]. In the
past few years, NGS techniques have been used for non-
invasive prenatal testing to analyze fetal aneuploidy [6].
They are also utilized for various other applications, in-
cluding the detection of mutations in tumor-related
genes for quality control of cell therapy products or gen-
etically modified cell products [7, 8]. However, the limit
of detection (LOD) of NGS-based techniques has not
been well defined. Despite the increasing use of NGS for
detecting low-level somatic mutations in clinical tissue
samples and cell substrates for biopharmaceuticals, in-
cluding cell therapy products and genetically modified
cell products, the LOD of NGS for allele frequencies
(AFs) is not verified often in each laboratory. Moreover,
prior to detecting mutations with low AFs, researchers
should have a cutoff threshold to eliminate false-positive
results, using the determined or estimated LOD based
on a clear understanding of the performance and limita-
tions of their NGS-based methodology in their
laboratories.
Currently, three types of NGS-based analytical

methods are mainly used to identify genomic mutations:
(i) whole-exome sequencing (WES), (ii) whole-genome
sequencing (WGS), and (iii) targeted sequencing (TS) [9,
10]. For example, to detect germline mutations, the
commonly required depths of sequencing are usually
75–100× and 30–50× for WES and WGS, respectively
[11], where × indicates the fold number of unique reads
that include a given nucleotide in the reconstructed se-
quence. In contrast, to analyze somatic mutations, dee-
per sequencing must be performed because unlike
germline mutations, somatic mutations are mosaic [12],
and therefore genetically abnormal cells with somatic
mutations can be present in very low numbers relative
to normal cells [13]. Most TS methods have an average
depth of coverage of 500× or more [14]. Therefore, in
contrast to WES and WGS, TS can guarantee high ana-
lytical sensitivity and specificity for detecting single-
nucleotide variants (SNVs), indels, and selected translo-
cations [15, 16]. In addition, TS is more rapid and cost-
effective than are WES and WGS. However, its limita-
tion is that only mutations currently known to be im-
portant can be detected. WES can be useful as a

comprehensive approach to identify pathogenic variants
in protein-coding regions of the genome. Moreover, with
decreasing sequence costs (because of sequencing plat-
forms), analysis using WES data is an effective approach
for identifying more causal mutations than detecting
mutations by TS.
Currently, several studies have reported the application

of WES focusing on the exome using NGS techniques to
diagnose some undiagnosed diseases [17] or to control
the quality of cell substrates for biopharmaceuticals [18,
19]. Therefore, to accurately evaluate the relationship
between genetic mutations and diseases or the quality of
cell substrates, the in-house performance of WES should
be carefully evaluated in advance. Otherwise, the results
obtained by WES would greatly affect decision-making
in clinical or research settings. Thus, we aimed to de-
velop a simple method to estimate the LOD for genomic
variants with low AFs, which is required in setting a cut-
off threshold in WES.

Results
Sequencing coverage of on-target regions
To assess the performance of a measurement system for
AFs of genomic variants by NGS, we carried out a per-
formance test for NGS using genomic DNA with 20 mu-
tations, whose AFs had been determined by digital
droplet PCR (ddPCR) in advance, as a reference material
for NGS. After performing WES and mapping to the ref-
erence sequence (hg19), we investigated the relationship
between the precision of the measured AFs and the
amount of sequencing data. Four sequencing datasets
with different sizes [5, 15, 30, and 40 G base pairs (Gbp)]
were obtained by randomly downsampling all sequen-
cing data obtained by mapping. Next, mutations such as
SNVs in each sequencing data size were detected by
genome-wide analysis. In our workflow strategy, we per-
formed independent quadruplicate technical replicate
experiments, which included the whole procedure start-
ing from library preparation (Fig. 1), using the pre-
validated genomic DNA sample to characterize the de-
tection of AFs by WES. The results showed that the
average numbers of mapped reads per experiment were
50 million at a data size of 5 Gbp, 150 million at 15
Gbp, 299 million at 30 Gbp, and 399 million at 40 Gbp
(Table S1). Of the reads mapped to the genome, ap-
proximately 76% was mapped to the on-target region in
all analyses, indicating that the sequencing data were ac-
quired uniformly. The average value of the mean depth
per experiment was 63× at 5 Gbp, 189× at 15 Gbp, 377×
at 30 Gbp, and 503× at 40 Gbp. In addition, the cover
rate per experiment, which was achieved from whole ex-
ome capture and sequencing, was more than 91% with
≥20× of the depth at 5 Gbp, and more than 96% with
≥40× of the depth at 15, 30 and 40 Gbp. The complete
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coverage information regarding the differences in all
other sequence experiments is presented in Table S1.

Measurement of reproducibility of AFs
To assess the reproducibility of the WES-based AF
measurement of genetic mutations, we next investigated
whether point mutations in different genomic regions
can be detected with high precision in quadruplicate
technical replicate experiments at each sequencing data
size (5, 15, 30, and 40 Gbp). The pre-validated genomic
DNA employed as reference material contained 20 mu-
tations with AFs of 1.0–33.5%, which is particularly suit-
able for the evaluation of a WES system to measure
mutations with low AFs. By using these 20 mutations,
we examined the performance of WES for mutation ana-
lysis, based on the % relative standard deviation (%RSD)

value as the degree of variability of AFs. %RSD values
for AFs of the 20 genetic mutations were calculated
using the data from the quadruplicate technical repli-
cates of the reference genomic DNA. As shown in Fig. 2,
with an increasing amount of sequencing data, the num-
ber of mutations with an RSD < 10% and ≥ 30% increased
and decreased, respectively, indicating that the larger the
sequencing data size, the better the repeatability/preci-
sion of the WES system.

Measurement accuracy of AFs
The LOD of WGS/WES-based analysis for somatic gen-
omic variants with low AFs must be as low as possible,
preferably between 1 and 10% or less. However, the
LOD for such genetic mutations by NGS can vary widely
depending on the sequencing coverage. Therefore, we

Fig. 1 Experimental overview of analysis strategies used in this study. A reference material was sequenced using the same whole-exome
sequencing (WES) process in quadruplicate technical replicate experiments. Expt., experiment; Gbp, giga base pairs
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examined the relationship between the LOD and se-
quencing coverage in our NGS-based analysis system.
Based on each sequencing data size, which was derived
from the quadruplicate technical replicate experiments,
the WES-based AFs (WES-AFs) of each of the 20 muta-
tions were obtained. Overall, these WES-AFs were sig-
nificantly associated with the AFs pre-validated by
ddPCR (ddPCR-AFs; Fig. 3a–e), which demonstrates the
accuracy of the WES-AFs. Therefore, the arithmetic
mean values of WES-AFs obtained from the multiple
technical replicates were used as the representative
values for further analysis.

LOD of AFs
When the %RSD values of the 20 mutations derived
from the quadruplicate technical replicates at different
sequencing data sizes were plotted against their mean
WES-AFs, the plots showed large fluctuations (Fig. 4a–
d). Therefore, to obtain a clearer understanding of the
relationship between the mean WES-AFs and %RSD
values, we visualized and interpreted the data using a
moving average of %RSD values. The moving average
was calculated as a mean of 3, 5, or 7 adjacent data
points of %RSD values. As shown in Fig. 4a–d and Fig.
S1A–S1D, all moving average curves at different

Fig. 2 Relationship between the relative standard deviation (RSD) values for allele frequencies (AFs) obtained from WES analysis and the
sequencing data size. The RSD values (%) for AFs of the 20 genetic mutations were calculated based on the data obtained from quadruplicate
technical replicates. As the size of sequencing data increased, the number of mutations with RSD values < 10% increased (a) while those ≥30%
decreased (b)
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sequencing data sizes showed a trend where %RSD de-
creased as the mean WES-AF increased, allowing object-
ive evaluation of measurement error variations of the
determined AFs.
In the present study, the LOD was defined as a WES-

AF where its mean value was 3.3 times higher than its
own standard deviation [20, 21], resulting in an RSD of

30% [22, 23]. Therefore, when the mean values of WES-
AF with an RSD of 30% were read from the moving
average curve graphs in Fig. 4a–d, the AFs in the se-
quencing data sizes of 5, 15, 30, and 40 Gbp were 22.1,
8.7, 6.6, and 7.2%, respectively (Fig. 5).
Separately, to examine the influence of the method

used for DNA library preparation in our study, we also

Fig. 3 Correlation of allele frequencies validated by WES and droplet digital PCR (ddPCR) analysis. The degree of correlation of the 20 genetic
mutations detected in the reference material across quadruplicate technical replicate experiments (Expt. 1–4) was assessed by linear regression
analysis. The combination (ddPCR-AFs vs. WES-AFs) for regression analysis is displayed in each sequencing data size of 5 (a), 15 (b), 30 (c), and 40
(d) Gbp. In the graphs, each dot color represents one of the four technical replicates. e The relationships between experimentally detected WES-
AFs and pre-validated ddPCR-AFs were verified by Pearson’s correlation coefficient (r). The p-value of the correlation was determined using the t-
distribution. Mean values [± standard deviation (SD)] of the r and p-values obtained from four experiments were calculated for each sequencing
data size (*P < 0.05)
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Fig. 4 Limit of detection (LOD) of allele frequency in WES analysis. The %RSD values of AFs calculated from independent quadruplicate experiments were
plotted against the mean values of AFs (mean of WES-AFs) obtained from their quadruplicate replicates. The trend in the consistency for %RSD vs. mean values
of WES-AFs is represented by the 7 point-moving average curve on the graph. The derivation of LOD30%RSD is illustrated by dotted lines (see arrow). All analyses
were performed using the following sequencing data sizes: 5 (a), 15 (b), 30 (c), and 40 (d) Gbp

Fig. 5 Assessment of AF LOD in WES analysis. Line graph showing the trend in correlation between LOD and sequencing data size (from Fig. 4).
Even when WES was performed using a sequencing data size > 15 Gbp, the LOD remained relatively constant
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performed WES analysis using the Illumina TruSeq Ex-
ome Enrichment Kit for library preparation. As shown
in Fig. S2A–S2D, AFs in the sequencing data sizes of 15,
30, 40 Gbp were 7.3, 6.3 and 6.2% at an RSD value of
30%, respectively, indicating comparable LOD values to
those in Fig. 5. Therefore, even if another library prepar-
ation method is employed, there is not much difference
in estimated LOD when the sequencing data size is ≥15
Gbp. These results support the reproducibility of our
method for estimating LOD—regardless of library prep-
aration method—as well as the reproducibility of the
RSD value trend derived from the technical replicate
experiments.

Discussion
In the present study, we employed a simple method for
obtaining an appropriate in-house cutoff to evaluate
genetic mutations with low AFs in WES by estimating
the LOD based on WES-AF %RSDs, which were derived
from multiple technical replicates of a reference genomic
DNA sample. The AFs of the 20 mutations in the refer-
ence sample were pre-validated using ddPCR by the
manufacturer, which was also useful for evaluating the
accuracy of WES-based analysis. To detect mutations
with low AFs, the WES-based analysis system must ex-
hibit high measurement reproducibility/precision.
Therefore, we examined the depth (sequencing data size)
necessary for the detection of such mutations. We re-
peatedly analyzed the reference genomic DNA sample
under the same conditions to compare the AFs of the
mutations detected in each WES and evaluated the de-
gree of variation (Fig. 1). As shown in Fig. 2, the %RSDs
of the WES-AFs decreased when the sequencing data
size increased. Therefore, the lower the LOD of WES-
AFs, the larger the sequencing data size that is required
for AF measurement; this is because the LOD can be de-
fined as a WES-AF whose mean value is 3.3 times higher
than its own standard deviation, resulting in an RSD of
30% [22, 23]. The relationship between the average
WES-AF and its %RSD value of quadruplicate technical
replicates was evaluated by creating scatter plots of the
%RSD values against the average values of each WES-AF
and by drawing a moving average curve based on these
scatter plots; accordingly, a decreasing trend of %RSD
value was identified as the average WES-AF value in-
creased (Figs. 4 and S1). Therefore, based on the defin-
ition described above and the smoothed moving average
curve of the %RSD value, the LOD values of WES-AF
can be easily estimated. As shown in Figs. 5 and S2D,
the LOD value did not decrease linearly with an increase
in sequencing data size; however, it almost reached its
lowest value at 15 Gbp or more, indicating that the WES
designed in this study requires a sequencing data size of
≥15 Gbp to detect mutations with a low AF of 5–10%,

regardless of library preparation methods, and that in-
creasing the sequencing data size (> 15 Gbp) does not
markedly contribute to further decreasing the LOD. An-
other advantage of our approach is that the LOD can be
estimated even when a pre-validated reference material
is not available. In such cases, the mean AFs of specific
mutations and their RSD values, obtained from multiple
technical replicates of NGS analysis for any genomic
DNA sample, can be used as a substitute for reference
genomic DNA.
In NGS-based genetic mutation analysis, the number

of cells (genomic copy number) targeted for analysis is
another factor to be considered. One sequenced read
can be considered to correspond to one genome mol-
ecule (one copy). In addition, as genomic DNA on auto-
somes is typically present as two copies per somatic cell,
it can be assumed that two reads are derived from one
cell. Since the reads to be mapped are often prepared
from genomic DNA randomly selected from a large
number of cells, two reads are not necessarily derived
from one cell. However, because of the limited number
of reads mapped, the genomes of all the cells used in li-
brary preparation are not covered. For example, in the
target sequence, the number of reads (depth) is 1000–
10,000× at most [11]. Approximately 6.6 pg of genomic
DNA can be extracted from a diploid primary cell (3000
ng of genomic DNA was used to create a library for ex-
ome sequencing in this study), which corresponds to
4.5 × 105 cells. Considering that there is an upper limit
on the number of reads to be mapped, the applications
at clinical or research settings require a depth of >
1000–10,000× coverage even for the target sequence.
Thus, regardless of the read depth in exome analysis, it
is not possible to analyze all 4.5 × 105 cells. Therefore, to
identify false-positive mutations, it is extremely import-
ant to evaluate the LOD of individual analysis systems
and assign a cutoff threshold for NGS devices, which
can be determined using a reference material containing
accurately validated genetic mutations.
In summary, using our method, the LOD for AFs in

exome sequencing was between 5 and 10% when the se-
quencing data size was 15 Gbp or more. The LOD may
depend on various conditions, including the method of
sample preparation (e.g., method of genome extraction
or library preparation), NGS platform, and other analysis
tools. Nevertheless, the approach used for estimating the
LOD in the present study is applicable not only to WES-
AF but also to AFs measured by other NGS-based
methods such as WGS [24]. Researchers must identify
the LOD of the analytical method employed to ensure
that it is suited to their research goals. The in-house
LOD estimated by the approach as in this study would
be useful for setting the cutoff threshold of AFs obtained
by NGS.
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Conclusion
Second-generation sequencing, such as that used by the
HiSeq 2500 sequencing system, and which was employed
in this study, is a method that labels PCR-amplified
DNA with a fluorescent molecule and detects the light
emitted when the DNA fragment is extended [2]. This
NGS device operates as a detector that reads fluorescent
signals labeled at each base, and can therefore be consid-
ered an analytical device similar to many other spectro-
scopic instruments (e.g., fluorescence spectrophotometer
and laser scanning microscope). Generally, it is import-
ant to evaluate the LOD during microanalysis in analyt-
ical chemistry. Particularly, in NGS-based analyses of
genetic mutations, precise and accurate results must be
provided by combining the wet analysis process (NGS-
based analysis itself) and the dry bioinformatics process
(e.g., type and purpose of gene mutation and results of
AF). However, analysis processes differ depending on
the purpose of analyzing genetic mutations, and it is
therefore not easy to ensure analytical validity. Thus, as
the LOD differs depending on the analysis system or
platform used, it is extremely important to establish a
system for detecting reliable signals for mutations with
low AFs with high reproducibility and accuracy for each
research purpose. In this study, we conducted a general
performance test using a reference material with pre-
validated specific mutations and confirmed the analytical
validity for the LOD of the mutations. This method was
used to estimate the LOD by repeatedly measuring the
same genomic DNA sample under the same conditions
and by examining variations in the error of the resultant
AFs. For the various mutation analysis tools that have
been previously developed, the respective algorithms
used to determine LOD may not necessarily be dis-
closed. Therefore, it is useful and even necessary to de-
termine or estimate the in-house LOD of AFs in NGS
analysis based on actual measurements of reference ma-
terial or biological material, as demonstrated in the
present study.

Methods
Library preparation for whole-exome sequencing
WES was performed using a DNA sample (Quantitative
Multiplex Reference Standard gDNA; Horizon Discov-
ery, Cambridge, UK) with 20 mutations at 1.0–33.5% AF
pre-validated by ddPCR. The concentration and total
amount of nucleic acids required for WES analysis were
determined by absorption spectrometry using a Nano-
Drop (Thermo Fisher Scientific, Waltham, MA, USA)
and fluorescence analysis using the Quant-iT dsDNA BR
Assay Kit (Thermo Fisher Scientific). The measured
values obtained by these two analytical methods showed
no deviation. The NGS workflow is summarized in Fig.
1. A total of 3 μg of DNA sample (reference material)

was physically fragmented to several hundreds of base
pairs (average of 250 bp) using Covaris Acoustic Solubili-
zer (Covaris, Inc., Woburn, MA, USA) according to the
manufacturer’s protocol.
After fragmentation, the sheared DNA fragments were

used to construct a library using SureSelect XT Human
All Exon V5 and SureSelect XT Reagent Kit (Agilent
Technologies, Santa Clara, CA, USA) according to the
manufacturer’s protocol. Next, target exons were
enriched using SureSelectXT Automated Target Enrich-
ment for Illumina Paired-End Multiplexed Sequencing
(Agilent Technologies). After enriched exome libraries
were multiplexed, the libraries were sequenced using a
HiSeq 2500 sequencing platform (Illumina, San Diego,
CA, USA) as paired-end 100 base reads, according to the
manufacturer’s protocol. Briefly, a paired-end DNA se-
quencing library was prepared by gDNA shearing, end-
repair, A-tailing, paired-end adaptor ligation, and ampli-
fication. After hybridization of the library with bait se-
quences for 24 h, the captured library was purified and
amplified with an index barcode tag. The size distribu-
tion and concentration of the library was determined
with an Agilent Technologies 2100 Bioanalyzer.
Sequencing of the exome library was performed using

the 100-bp paired-end mode of the TruSeq PE Cluster
Kit v4 and TruSeq SBS Kit v4 (Illumina). The sequen-
cing step described above was repeated four times per
sample. The sequencing data and results are summarized
in Table S2.

Quality validation of sequence reads
We removed the 3′-end adaptor sequences with Cuta-
dapt v1.2.1 (https://cutadapt.readthedocs.io/en/stable/)
[25] with the set parameter -O 9 -m 32, and then re-
moved the 3′-end of reads shorter than 32 bp as well as
low-quality reads with fastq_quality trimmer (parameter:
-l 32) and fastq_quality_filter (parameters: -q 10 -p 99)
in FASTX-Toolkit v0.0.13 (http://hannonlab.cshl.edu/
fastx_toolkit/). The cleaned paired reads were extracted
using cmpfastq (http://compbio.brc.iop.kcl.ac.uk/
software/cmpfastq_pe.php) in Cutadapt v1.2.1.

Calculation of AF
Clean reads were mapped to the reference sequence, and
the results of mapping were adjusted to conditions ap-
propriate for mutation detection. First, clean reads were
mapped to the UCSC hg19 reference genome (down-
loaded from http://genome.ucsc.edu) using bwa aln/
sampe command with the default setting in BWA v0.5.9
(https://sourceforge.net/projects/bio-bwa/files/) [26].
Next, to generate sequencing data of varying sizes,
downsampling of each mapping result was performed in
Picard v1.93 (https://sourceforge.net/projects/picard/).
Using the downsample command (java -jar
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DownsampleSam.jar I = inbam O = outbam P = [down-
sample ratio]) of Picard, the BAM file for each sample
was downsampled to datasets of 5, 15, 30 and 40 Gbp
based on the value of the downsample parameter. To
correct suspected regions in the downsampled mapping
data results, pre-calling was performed with GATK Uni-
fiedGenotyper using default settings, followed by local
realignment around indels by GATK RealignerTarget-
Creator/IndelRealigner in the Genome Analysis Toolkit
(GATK) v1.6–9 (https://gatk.broadinstitute.org/hc/en-us)
[27, 28]. Based on the realignment results, the sequences
of reads aligned at each position were compared to the
reference sequence, and the base quality was readjusted to
a more accurate value by using GATK CountCovariates/
IndelRealigner with the default setting. This step was per-
formed based on the consistency between the reference
and read sequences. The mutation base list (pre-calling)
detected in the realigned results and known mutation data
[e.g., The Single Nucleotide Polymorphism Database
(dbSNP), if any] were used to identify regions where the
reference and read sequences matched. From these map-
ping results, base types sequenced for 20 mutations were
counted to calculate the AF using a custom script pow-
ered by Samtools v1.0 [29].

Data analysis
Based on the analytical evidence, the LOD is characterized
with 30%RSD [20–23]. To estimate the LOD of WES ana-
lysis, the %RSD was obtained for the AFs from four inde-
pendent WES experiments. Next, the relationship
between the mean AFs (mean of WES-AFs) obtained from
quadruplicate technical library replicates and %RSD values
of the mutations was graphed. However, the change in
%RSD for the mean WES-AFs was not sufficient for cap-
turing the overall trend; therefore, a moving average was
used to smooth the data. Finally, LOD30%RSD of WES ana-
lysis was estimated by reading the AF value of %RSD =
30% from the moving average curve of the %RSD value
versus the mean value of WES-AFs.
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Additional file 1: Figure S1. Limit of detection (LOD) of allele
frequency in whole-exome sequencing (WES) analysis. Three or five
point-moving average curve plots of percentage relative standard devi-
ation (%RSD) against the mean vales of WES-allele frequencies (AFs) were
used. The %RSD values were plotted against the mean WES-AFs. The con-
sistent trend in %RSD vs. mean WES-AFs is represented by the 3 or 5
point-moving average curve on the graph. The derivation of LOD30%RSD is
illustrated by dotted lines (see arrow). All analyses were performed using
the following sequencing data sizes: 5 (A), 15 (B), 30 (C), and 40 (D) Gbp.
Figure S2. AF LOD in WES analysis using the Illumina TruSeq Exome En-
richment Kit for library preparation. The Illumina TruSeq Exome Enrich-
ment Kit was used to capture the exome region, and downstream
analysis was performed using a workflow designed by Illumina, Inc. The

%RSD values of AFs calculated from quadruplicate technical replicates
were plotted against the mean values of AFs (mean WES-AFs) obtained
from quadruplicate technical replicates. The consistent trend in %RSD vs.
mean WES-AFs is represented by the moving average curve on the
graph. The derivation of LOD30%RSD is illustrated by dotted lines (see
arrow). All analyses were performed using the following WES data sizes:
15 (A), 30 (B), and 40 (C) Gbp. (Note: the 5 Gbp WES data size was ex-
cluded from this analysis because the on-target rates at some low AF po-
sitions were very low.) (D) Line graph showing the trend in correlation
between LOD and sequencing data size (from A–C). When WES was per-
formed using a sequencing data size > 15 Gbp, the LOD was relatively
constant and in the range of 5–10%. Table S1. Summary of sequencing
quality (sequencing data size: approximately 5 – 40 Gbp). Table S2. Se-
quencing results. Supplementary Methods. Exome sequencing via the
Illumina exome capture platform. Exome enrichment was independently
performed with quadruplicate technical replicates using the TruSeq Ex-
ome Enrichment Kit (Illumina). After enriched exome libraries were multi-
plexed, the libraries were sequenced using a NextSeq 500 sequencing
platform (Illumina) according to manufacturer’s instructions. We used the
FASTQ Toolkit App in BaseSpace™ Sequence Hub designed by Illumina,
Inc. to filter the data for quality and read length. Alignment to reference
sequences and variant identification were performed with the Enrich-
ment App (Illumina). The sequence data from this experiment has been
deposited on the NCBI (BioProject accession number PRJNA670243).
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