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Abstract

Background: The advance of high-throughput technologies has made it cost-effective to collect diverse types of
omic data in large-scale clinical and biological studies. While the collection of the vast amounts of multi-level omic
data from these studies provides a great opportunity for genetic research, the high dimensionality of omic data and
complex relationships among multi-level omic data bring tremendous analytic challenges.

Results: To address these challenges, we develop an integrative U (IU) method for the design and analysis of
multi-level omic data. While non-parametric methods make less model assumptions and are flexible for analyzing
different types of phenotypes and omic data, they have been less developed for association analysis of omic data. The
IU method is a nonparametric method that can accommodate various types of omic and phenotype data, and
consider interactive relationship among different levels of omic data. Through simulations and a real data application,
we compare the IU test with commonly used variance component tests.

Conclusions: Results show that the proposed test attains more robust type I error performance and higher empirical
power than variance component tests under various types of phenotypes and different underlying interaction effects.

Keywords: Non-parametric method, Functional data analysis, Integrative analysis

Background
With rapidly evolving high-throughput technologies and
ever-decreasing costs, it has become feasible to system-
atically study diverse types of omic data in biological
and clinical studies [1, 2]. The collection of multi-level
omic data from these studies provides us a great oppor-
tunity to integrate information from different levels of
omic data into association analysis [3–6]. Although omic-
based association analysis holds great promise for discov-
ering novel disease-associated biomarkers, the discovery
process is hampered by the lack of appropriate statis-
tical tools to consolidate and analyze multi-level omic
data. The development of advanced statistical methods to
address the analytical challenges faced by ongoing omic
data analysis can enhance our ability to identify new
disease-associated biomarkers.
Comprehensive reviews of integrative analysis on multi-

level omic data are summarized in [3, 5, 7] and the
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references therein. Most of the existing methods for inte-
grative analysis are developed based on score-type tests or
variance component tests. For instance, in the integrative
analysis of single-nucleotide variants (SNVs) and tran-
script expression data, [6] used the estimating equations
to estimate parameters of interest, and then proposed a
Wald test to evaluate the association between the out-
come and a set of genetic variants, considering possible
interactions. In order to efficiently test the joint effects
of SNVs and gene expression with a binary phenotype,
[8] developed a combined variance component test in
the mixed model framework. Based on this work, [9]
further investigated a variance component score test for
modeling multiple genomic data including SNVs, gene
expression, and methylation data, each of which can come
from different samples or studies. While those methods
have attractive properties under various scenarios, most of
these methods are parametric-based or semi-parametric-
based, which often rely on a distribution assumption (e.g.,
a normal distribution assumption). When this assump-
tion is violated, these methods are subject to false positive
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results and/or power loss [10]. The diagnostic assess-
ments of human diseases can often be of different types
(e.g., binary, ordinal and continuous) and follow known or
unknown distributions. This issue is, however, paid less
attention by the existing methods.
Moreover, the molecular complexity of human dis-

eases manifests itself at the genomic, transcriptomic,
epigenomic and proteomic levels [11, 12]. Different
levels of omic data can interact in the disease pro-
cess. By considering interactions between different lev-
els of omic data, the power of detecting disease-
associated biomarkers can be potentially enhanced.While
some of existing methods consider interactions between
omic data [6, 8], they commonly assume a particu-
lar interaction model (e.g., a multiplicative model), and
are subject to suboptimal performance if the under-
lying model has different forms (e.g., a threshold
model).
To address these limitations, we propose a non-

parametric framework for association analysis using
multi-level omic data. The IU test is a U-statistic-based
test, which is constructed using the pairwise omic and
phenotype similarities of subjects. It has several remark-
able features worthy of attention: 1) it makes no distri-
bution assumptions, and therefore provides a robust and
powerful performance when analyzing phenotypes and
omic data with unknown distributions; 2) it provides a
unified framework for analyzing various types of pheno-
types and omic data (binary, ordinal and continuous); and
3) it considers interactions among different levels of omic
data without posing specific model assumptions.
The remaining of the paper is organized as follows. We

begin with a detailed description of the proposed integra-
tive U method in “Methods” section, and then present the
simulation results of the IU method under different types
of phenotypes and various genetic or interaction effects
in “Simulation” section. Using the proposed method, we
performed an integrative analysis of the DNA sequenc-
ing and gene expression data from a hypertension study in
“An integrative analysis of gene and gene expression data
of hypertension” section. “Conclusion” section summa-
rizes the advantages and limitations of the IU test. Details
of the proof of the main results can be found in the
Additional file 1.

Methods
Suppose that we are interested in evaluating the joint
association of M levels of omic data with a disease phe-
notype of interest. Without loss of generality, we illustrate
the method with two levels of omic data (i.e., SNVs and
gene expression data). The extension to more than 2
levels of omic data will be discussed later in “Conclu-
sion” section. Let Yi be a continuous or discrete disease
phenotype, Si be a scalar gene expression variable, and

Gi = (Gi(t1),Gi(t2), ...,Gi(tp)) be the genotypes of p SNVs
(e.g., coding variants in a gene) for the ith individual (i =
1, ......, n), where tj is the SNV location and Gi(tj) = 0, 1, 2
is coded as the number of minor alleles.

Genetic smoothing
In recent literature, functional data analysis has been often
applied to handle the genetic data. For instance, [13] pro-
posed a functional linear model for quantitative traits
using B-spline basis functions to expand the genotype
functions. Vsevolozhskaya et al. [14] proposed a func-
tional analysis of variance method to test the association
of sequence variants in a genomic region with a qualita-
tive trait. Functional data analysis has also been developed
for different types of traits and study purposes in genetic
research. For instance, [15] developed a Cox proportional
hazard model with functional regression for gene-based
association analysis of survival traits. Moreover, [16] pro-
posed a generalized functional linear model to perform
meta-analysis of multiple studies to evaluate the associa-
tion of genetic variants with dichotomous traits.
Here we adopt the functional data analysis to handle the

SNVs. Rather than assuming Gi(tj) as a random variable,
we assume that Gi(tj) is a discrete realization of a func-
tion Gi(t) generated from a stochastic process with mean
function η(t) and covariance function �(s, t). The B-spine
smoothing technique is then used tomodel the underlying
function curve Gi(t). In other words, Gi(t) can be written
as a linear sum of specified basis functions:

Gi(t) =
K∑

k=1
βikBk(t),

where {βk(t), k = 1, ...,K} is the polynomial basis func-
tions in L2 Hilbert space. The fitted smoothing curves are
demonstrated in Fig. 1. Similar to other functional-based
methods [14], we implement the smoothing by scaling the
locations to the interval [ 0, 1], and use the penalization
technique to determine the appropriate number of knots
(i.e., smoothness).

Test statistic
With the assumptions of Y, G(t) and S mentioned above,
we aim to test the hypotheses:
H0: Y is independent of G(t) and S;
Ha: Y is associated with G(t) or S.
Since we do not assume any regression form of the

association between Y and the genetic variables (G and
S), to perform the hypothesis testing, we propose a non-
parametric integrative U statistic defined as

Un = 1
n(n − 1)

n∑

i,j=1,i�=j
K1(Yi,Yj)K2(Si, Sj)

∫ 1

0
Gi(t)Gj(t)dt,
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Fig. 1 A simple illustration of fitted B-spline curves for genotype sequence. The solid dots present the genotype sequence for one subject, and the
solid thick curve is the corresponding smooth curve. In total, a sample of 10 subjects are simulated and the 10 corresponding smoothed curves are
presented

where K1(·, ·) and K2(·, ·) are symmetric kernel matrices
that measure the similarities of two individuals’ pheno-
types and gene expression values, respectively. For sim-
plicity, we use the cross product for both kernel matrices

Un = 1
n(n − 1)

n∑

i,j=1,i�=j
YiYjSiSj

∫ 1

0
Gi(t)Gj(t)dt.

In addition to the cross product kernel, other kernels,
such as those proposed in [10] and [17] can also be used.
From the above equation, the proposed test statistic is

a U statistic defined on all possible pairs of subjects (i, j),
where the genetic similarity of subjects i and j is defined
as the inner product of the smooth curves of the stochas-
tic process, i.e.,

∫ 1
0 Gi(t)Gj(t)dt. The phenotype similarity

and gene expression similarity between the subjects i and
j are simply products of two subjects’ phenotype and gene
expression values, respectively.

Asymptotic property
Under the null hypothesis and the assumption Gi(t) ∼
SP(η(t),�(s, t)), we obtain

ri = E(Un|Zi) = μYμSYiSi
∫ 1

0
Gi(t)η(t)dt,

μ0 = E(Un) = μ2
Yμ2

S||η(t)||2,

where Zi = (Yi, Si,Gi), μY and μS are the population
means of Y and S, respectively. The asymptotic result of

non-degenerated U statistics in [18] implies that
√
n(Un − μ0) → N

(
0, 4σ 2

1
)
,

where σ 2
1 = Var(r1). Moreover, by applying the result of

stochastic processes in Section 4.2 of [19], we can further
obtain that

Var(r1) = μ2
Yμ2

SVar
(
Y1S1

∫
G1(t)η(t)dt

)

= μ2
Yμ2

S

( m∑

k=1
λkδ

2
k

)
(
μ2
Y + σ 2

Y
) (

μ2
S + σ 2

S
)

+μ2
Yμ2

S
(
μ2
Yσ 2

S + μ2
Sσ

2
Y + σ 2

Yσ 2
S
) ||η||4,

where m is the number of eigenvalues of �, (λk ,φk(t))
are eigenvalues and eigenfunctions of the covariance func-
tion �, δk = ∫

φk(t)η(t)dt, σ 2
Y and σ 2

S are the population
variances of Y and S.
Because μ0 is unobservable, we propose to estimate it

by substituting the population means of Y, S and G(t) by
their corresponding sample means, i.e.,

μ̂0 = Ȳ 2S̄2||Ḡ(t)||2. (1)

Let s2Y and s2S be the sample variances of Y and S,
λ̂k and φ̂k be the eigenvalues and eigenfunctions of
�̂(s, t) = 1

n
∑n

i=1
(
Gi(t) − Ḡ(t)

) (
Gi(s) − Ḡ(s)

)
. By let-

ting δ̂k = ∫ 1
0 φ̂k(t)Ḡ(t)dt, we can obtain the asymptotic

distribution of the test statistic under H0:

Theorem 1. Assume that both Y and S have finite means
and variances and G(t) ∼ SP(η(t),�(s, t)). Moreover,
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μYμS �= 0 and S is independent of G(t). Then, under H0,

Tn =
√
n(Un − μ̂0)

σ̂
→ N(0, 1),

where μ̂0 is defined in (1) and σ̂ 2 =
4

∑
λ̂k δ̂

2
k
{
Ȳ 2S̄2

(
Ȳ 2s2S + S̄2s2Y + s2Y s

2
S
)}+4Ȳ 2S̄2||Ḡ||4s2Y s2S.

We would reject H0 if |√n(Un − μ̂0)/σ̂ | > zα/2, where
zα/2 is the upper α/2 quantile of the standard normal
distribution.

Remark 1. The assumption of the underlying stochastic
process is very general. We do not need a specific condition
on the pointwise distributions such as Gaussian, which is
the required assumption in [14].

Remark 2. The proposed test inherits the robustness
property from U statistics, and is capable of handling
both discrete and continuous phenotypes with various
underlying distributions. Moreover, the proposed test does
not need to specify any form of the regression function
μ = E(Y |S,G), hence the test procedure is free of model
assumptions.

The method can also be used for different study pur-
poses. For instance, to only test the effect of SNVs
(e.g., in a genetic association study), the corresponding
integrative U test statistic can be simplified as UG =

1
n(n−1)

∑
i�=j

YiYj
∫ 1
0 Gi(t)Gj(t)dt with μ̂G = Ȳ 2||Ḡ(t)||2 and

variance estimator σ̂ 2
G = 4μ̂2

Y s
2
Y

∑
λ̂k δ̂

2
k .

Power and sample size
While omic-based studies become increasingly popular in
human genetic research, few statistical tools are available
for power and sample size calculation. In this section, we
investigate the power of the proposed method under cer-
tain alternative hypotheses and provide a convenient way
for power/sample size calculation.
We have studied the IU test under the null hypoth-

esis, E
{
YiYjSiSj

∫ 1
0 Gi(t)Gj(t)dt

}
= μ0 = μ2

Yμ2
S||η||2.

Under the alternative hypothesis, we assume that
E

{
YiYjSiSj

∫ 1
0 Gi(t)Gj(t)dt

}
= μ1 �= μ0 and Var

(
YiYjSiSj

∫ 1
0 Gi(t)Gj(t)dt|Yi, Si,Gi

)
= τ 21 . Without loss of gener-

ality, we assume that μ1 > μ0. Applying the Hoeffding
projection in [18], we obtain that

√
n(Un−μ1)

2τ1 → N(0, 1).
Hence, under the alternative hypothesis, Un can be writ-
ten as

√
n(Un − μ̂0)

σ̂
= 2τ1

σ̂

√
n(Un − μ1)

2τ1
+

√
n(μ1 − μ̂0)

σ̂
.

Since both μ̂0 and σ̂ are consistent estimators of μ0 and
σ , for a sufficiently large n, we have

√
n(Un − μ̂0)

σ̂
∼ N

(√
n(μ1 − μ0)

σ
,
4τ 21
σ 2

)
.

Therefore, the power of the proposed test can be calcu-
lated by

P
(∣∣∣∣

√
n(Un − μ̂0)

σ̂

∣∣∣∣ > zα/2

)

≥ P
(√

n(Un − μ̂0)

σ̂
> zα/2

)

≥ P
(√

n(Un − μ1)

2τ1
>

σ̂

2τ1

(
zα/2 −

√
n(μ1 − μ0)

σ̂

))

= �

(
σ̂

2τ1

(√
n(μ1 − μ0)

σ̂
− zα/2

))
.

For desired power β , one can derive the mini-
mal required sample size by setting the inequality
�

(
σ
2τ1

(√
n(μ1−μ0)

σ
− zα/2

))
≥ β , therefore the required

sample size can be calculated by

n = min
m∈Z

{
m ≥ σ 2

(μ1 − μ0)2

(
zα/2 + 2τ1zβ

σ

)2
}
.

Results
Simulation
Through simulations, we compared the type I error
and empirical power of the proposed test with those
of two variance component methods: the adjusted ker-
nel sequencing association test and variance component
test proposed by [8]. Since the original kernel sequenc-
ing test developed by [17] is proposed for only sequencing
SNVs, we slightly modify the method to incorporate gene
expression data in the test. Recall that the sequence kernel
association test (SKAT) proposed by [17] has the form

Q = (Y − μ̂)TK(Y − μ̂),

where Y = (Y1, ...,Yn)T and K(Gi,Gj) = ∑p
k=1 wkGikGjk .

To make the methods comparable, the adjusted SKAT
(Adj-SKAT) is modified as:

Q̃ = (Y − μ̂)T K̃S(Y − μ̂),

where the elements of K̃S are defined as K̃S(Gi,Gj) =∑p
k=1 wkSiSjGikGjk .
Interestingly, the proposed Un has a similar form of Q.

If we define

KS(Gi,Gj) = SiSj
∫ 1

0
Gi(t)Gj(t)dt,

and further definemetricKS = (KS(Gi,Gj))n×n with zeros
as diagonal elements, then the proposed U statisticUn can
be written as a similar form to Adj-SKAT:

Un = YTKSY.
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In addition to Adj-SKAT, we also compared IU test with
the component variance test (VCT) developed under the
generalized linear mixed model framework by [8]. VCT
is proposed to test the joint effects of SNVs and gene
expression, and is defined as

Q̄ = 1
n

(Y−μ̂)T
{
a1GGT + a2SST + a3CCT

}
(Y−μ̂),

where (a1, a2, a3) are weight parameters andC is the prod-
uct of SNVs and gene expression. In the simulation, we
used the recommended weight, the inverse of the square
root of the variance, as suggested by [8].
The genetic data was simulated from the 1000 Genome

Project [20]. Specifically, we used a 1Mb region of the
genome (Chromosome 17: 7344328-8344327) from 1092
individuals in 1000 Genome Project. In each simulation
replicate, SNVs were generated by randomly choosing
a segment with p = 100 consecutive SNVs from the
genome. Then the stochastic smoothing function curves
were constructed by applying the functional data anal-
ysis to the SNV sequences. Gene expression data was
generated from a normal distribution, N(1, 1.22). The
natural cubic spline smoothing with penalty parameter
introduced in [14] was applied. All the results of type I
error and empirical power were calculated based on 1000
simulated replicates.

Type I error performance
The phenotype assessments can often be of different types
(e.g., binary and continuous phenotypes), with unknown
underlying distributions. In this simulation, we evaluated
the robustness of three methods against different phe-
notype distributions. Totally, four types of distributions:
Bernoulli (binary), Gaussian, T and Double-exponential
(DE), were considered in this simulation. Both T and DE
have heavier tails than Gaussian. The original VCT test
is developed for binary phenotype, but can be extended
for other types of phenotypes by using different link func-
tions. For instance, by using the identity function, VCT
can be used to analyze continuous phenotypes. UnderH0,
Y is independently generated from Bernoulli(1/(1+e0.2)),
N(1, 1), T2, T4 and DE(1), respectively. Table 1 sum-
marizes the type I error performance of three methods.
From Table 1, we find that type I error rates of both
VCT and Adj-SKAT are well controlled for Bernoulli-
and Gaussian-type of phenotypes, but are inflated under
the heavy tailed distributions(T and DE). As we expect
from the U statistic property, the IU test attains robust
performance under all phenotype distributions.
We further investigated the empirical levels of the pro-

posed test for different sample sizes. For this simulation,
we considered both continuous and binary phenotypes
and varied the study sample size from 100 to 500. A
normal distribution was used to simulate the continuous

phenotype, while balanced samples were generated for the
binary phenotype. 1000 independent simulation replicates
were used to obtain the empirical sizes. The empirical
levels of the test for nominal sizes 0.05 and 0.01 are sum-
marized in Table 2. As observed in Table 2, the type I
error rates of the proposed test are well controlled for both
types of phenotypes and different sample sizes.

Power performance
For the power comparison, we considered the scenar-
ios with or without an interaction between SNVs and
gene expression. For the scenarios with an interaction,
we studied the performance of the three methods under
various interaction models. Similar to the type I error
simulation, the genetic data was obtained from the 1000
Genome Project and gene expression Si was sampled
from N(1, 1.22). The binary response Yi was then gen-
erated from a logistic regression model. In each simu-
lation, we randomly chose 100 cases and 100 controls
to form a balanced case-control sample. For continuous
phenotypes, we simulated both Gaussian-distributed and
T-distributed phenotypes.

Case 1: No interaction effect

We first evaluated the power of threemethods under the
scenario when there is no interaction between SNVs and
gene expression. In the binary case, the underlying model
is similar to the one assumed in [8]

Model 1 (a):logit{P(Yi = 1|Gi, Si)} (2)
= −0.2 + GT

i βG + SiβS + SiGT
i γ ,

where βS is a scalar parameter, βG and γ are p × 1 vector
parameters. In the continuous case, a linear mixed model
was used,

Model 1 (b):Yi = 2 + GT
i βG + SiβS + SiGT

i γ + εi,
Model 1 (c):Yi = 2 + GT

i βG + SiβS + SiGT
i γ + ei,

where βG and βS were defined as in (2), εi ∼ N(0, 1) and
ei ∼ T(2), a T-distribution with 2 degrees of freedom.
Similar to [8], we assume that βG and γ are randomly

generated from probability distributions with mean 0 and
variances σ 2

G and σ 2
γ . In this simulation, the genetic effects

measured by βG were generated from a normal distribu-
tion, N(0, σ 2

G), while the interaction effects measured by
γ were all set to be zero (σ 2

γ = 0) in order to study the
marginal effects of genetic variables.
The power performance for the binary, Gaussian-

distributed, and T-distributed phenotypes under the
Model 1 is summarized in Fig. 2. The figure shows the
power performance of three methods when the effect of
gene expression, βs, increases and the effects of SNVs
remain the same (σG = 0.1). As shown in the figure, both
IU and VCT have higher power than Adj-SKAT as the
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Table 1 Type I error comparison of three methods for different types of phenotypes

phenotype distributions Bernoulli Gaussian T2 T4 DE

IU 0.048 0.049 0.052 0.055 0.052

VCT 0.046 0.053 0.091 0.068 0.075

Adj-SKAT 0.035 0.055 0.129 0.062 0.064

Bernoulli, Gaussian, T, and DE correspond to Binary, Gaussian-distributed, T-distributed, and Double-exponential distributed phenotypes. The nominal size of the test is 0.05
and n = 200

effect of gene expression increases for binary phenotype.
As expected, VCT achieves highest power for Gaussian-
distributed phenotype among the three methods. For the
T-distributed phenotype, IU outperforms VCT and Adj-
SKAT while Adj-SKAT has little power for T-distributed
phenotype. Overall, IU test is more robust than the other
two methods to the phenotype distributions.

Case 2: Interaction effect

We then compared the performance of three methods
under a more complex scenario when there is an inter-
action between SNVs and gene expression. In this sim-
ulation, we considered three types of interaction effects:
multiplicative, threshold, and random interaction effects.
Similar to the simulation with no interaction, we evaluated
the methods under three different kinds of phenotypes.
A multiplicative interaction effect is simulated for

binary, Gaussian-distributed and T-distributed pheno-
types based on the model below,

Model 2 (a):logit{P(Yi = 1|Gi, Si)} = −0.2 + c SiGT
i W ,

Model 2 (b):Yi = 2 + c SiGT
i W + εi,

Model 2 (c):Yi = 2 + c SiGT
i W + ei,

where c is a scale parameter, εi ∼ N(0, 1), and ei ∼
T(2). With W being a p × 1 vector, each element of
W equals to 1 if the corresponding genetic variant is a
causal SNV, and 0 if the genetic variant is non-causal.
Under the null hypothesis of no association, all elements
in W are 0. Let m be the number of causal SNVs, then
a larger m indicates increasing interaction effects on the
phenotype. Similarly, a large c corresponds to a strong
interaction effect. The upper panel of Fig. 3 shows the
power comparison of three methods as m increases from

0 to 8 with scale parameter c = 1, and the lower panel of
Fig. 3 shows power performance as the scale parameter c
increases from 0 to 1.5 with m = 4. As we observe from
the figure, IU test attains higher power than VCT and
Adj-SKAT for binary and T-distributed phenotypes with
the increasing interaction effect. For Gaussian-distributed
phenotype, Adj-SKAT has highest power among the three
methods because the cross product kernel used in Adj-
SKAT perfectly captures the true underlying interaction
model.
Next we considered a threshold interaction model,

which has the following form:

Model 3 (a):logit{P(Yi = 1|Gi, Si)}
=

{ −0.2 + SiGT
i W , if SiGT

i W > d,
−0.2 otherwise,

Model 3 (b):Yi =
{
2 + SiGT

i W + εi, if SiGT
i W > d,

2 + εi otherwise,

Model 3 (c):Yi =
{
2 + SiGT

i W + ei, if SiGT
i W > d,

2 + ei otherwise,

where d is a threshold parameter, εi and ei are the same as
those in Model 2. A large d corresponds to a weak inter-
action effect. Under this model, the effect substantially
increases when the product of SNV and gene expression
exceeds the threshold d. Figure 4 shows that all the three
tests have decreased power as the threshold parameter
d increases from 0 to 8. Moreover, the IU test achieves
much higher power than the other two methods for the
binary and T-distributed phenotypes while it has a similar
performance as the other two methods for the Gaussian-
distributed phenotype.

Table 2 Type I error of IU for different sample sizes with nominal sizes 0.05 and 0.01

Type I error with Gaussian phenotype

α / n 100 200 300 400 500

0.05 0.049 0.051 0.048 0.047 0.052

0.01 0.01 0.011 0.009 0.011 0.010

Type I error with binary phenotype

α / n 100 200 300 400 500

0.05 0.044 0.046 0.048 0.052 0.048

0.01 0.011 0.012 0.009 0.011 0.012
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Fig. 2 Power comparison of three methods for different types of phenotypes when there is no interaction. βS stands for the causal effect of gene
expression S

Finally, we considered a random effect interaction
model based on the model 1 described in (2) with
elements of γ generated from a uniform distribution
U(−a, a), a > 0. With no marginal effects (i.e., σG =
0, βS = 0), Fig. 5 shows that IU test has a similar
power performance as VCT for both binary andGaussian-
distributed phenotype. We also find that for the heavy-
tailed phenotype (i.e., the T-distributed phenotype), IU
attains more robust type I error and higher power than
VCT and Adj-SKAT. With both marginal (σG = 0.1, βS =
0, 0.5, 1, 1.5, 2) and interaction effects (a = 0.1), the power
performance shown in Fig. 6 is similar to that of Case 1
shown in Fig. 2.
In summary, the proposed IU test obtains higher power

as the marginal or interaction effects increase. Unlike
VCT or Adj-SKAT, which show higher power only under
some specific models (e.g., the random effect or cross-
product interaction models), the IU test showed more
robust and stable performance for different phenotypes
and various underlying models. These features make IU
more appropriate to use when we have limited knowledge
on the actual underlying model.

An integrative analysis of gene and gene expression data
of hypertension
Hypertension is one of the most common chronic dis-
eases, which affects a large proportion of human popula-
tion worldwide. Despite decades of research in hyperten-
sion, the genetic etiology of hypertension remains largely
unknown. The successful identification of genetic variants
predisposing to hypertension holds promise for providing

better understanding of genetic etiology of hypertension
and promoting new therapeutic targets. In this appli-
cation, we performed an integrative analysis of DNA
sequencing and gene expression data from the San Anto-
nio Family Heart Study (SAFHS) and the San Antonio
Family Diabetes/Gallbladder Study (SAFDGS). SAFHS
and SAFDGS include standardized diagnostic assess-
ments of hypertension (i.e., Case vs. Control). Whole-
genome sequencing (WGS) data were available on the
odd numbered autosomes. In addition, gene expres-
sion was measured using peripheral blood mononu-
clear cells collected at the first examination. In total,
there are 260 subjects with WGS data, gene expres-
sion data, and the binary hypertension (HTN) phenotype
measured.
Prior to the integrative analysis, we performed a

quality control and data preparation process. In this
process, we assembled multiple SNVs into genes based
on the Genome Reference Consortium release version 38
(GRCh38) and excluded genes without gene expression
data. To deal with missing values in the genetic data,
we imputed the genotype values from multinomial dis-
tribution using the sample proportions as the generating
probabilities. After data processing step, 2389 genes and
the corresponding gene expression remained for the inte-
grative analysis. We then applied a generalized mixed
model to the binary HTN phenotype with covariates
AGE, MEDS, SMOKE, SEX and the kinship matrix to
remove potential confounding effects and the familial
correlations. The residuals were used as the responses in
this integrative analysis. Eventually, the proposed IU test
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Fig. 3 Power comparison of three methods for different types of phenotypes when there is a multiplicative interaction.m stands for the number of
causal SNVs and c stands for the scale of interaction effect in the Model 2

is applied to detect the joint effect of genes and gene
expression data.
From the Q-Q plot of HTN in Fig. 7, we find

no evidence of systematical inflation of the associ-
ation result. While there is no significant findings
after adjusting for multiple testing, there are a few
genes reached marginal significance (e.g., UBAC1).
Among the top findings, some genes may have biolog-
ical plausibility related to hypertension. For instance,
MFGE8 has been previously reported to up-regulate
the intake of Dietary Fats [21], and the Dietary Fats

regulates blood pressure via Central Leptin mediated
pathways [22]. Therefore, MFGE8 could be a poten-
tial risk factor for hypertension [23]. The expression
of IFI44L is demonstrably increased upon contact of
Nickel [24] or Nickel Chloride [25], which is associ-
ated with elevated prevalence of hypertension [26].
Although previous studies suggested that some genes in
Table 3 may play a role in hypertension, further stud-
ies and biological experiments are needed to confirm the
association and to further investigate the potential role of
these genes in hypertension.
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Fig. 4 Power comparison of three methods for different types of phenotypes when there is a threshold interaction. d is the threshold parameter in
Model 3

Conclusion
To facilitate the integrative analysis of omic data, we pro-
posed a unified non-parametric method to detect the
joint association of multi-level omic data with various
types of phenotypes. There are three main contributions
of the proposed IU method. First, it provides robust
performance for various types of phenotypes, including
binary, Gaussian and heavy-tailed distributions, due to the

robustness of U statistics. Second, the proposed integra-
tive U test achieves higher or comparable power com-
pared to existing methods (e.g., VCT) under different
types of interaction models. Finally, we also provide a sim-
ple sample size/power calculation to facilitate the design
of multi-level omic studies.
The connection between the proposed method and

variance component tests is that all test statistics are
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Fig. 5 Power comparison of three methods for different types of phenotypes when there is a random effect interaction in Model 1. a is the
boundary of the uniform distribution used to generate the random effect
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Fig. 6 Power comparison of three methods for different types of phenotypes when there are both marginal effects (σG = 0.1, βS = 0, 0.5, 1, 1.5 and
2) and random interaction effect (γ ∼ U(−0.1, 0.1)) in Model 1

in the form of kernel quadratic framework as seen in
“Simulation” section. It also connects to several other
U-statistic-based methods [10, 27]. As a similarity-based
test, the IU method is proposed as a non-degenerated
U statistic, which follows a normal distribution. One
advantage of using a non-degenerated U statistic is the
computational accuracy with no distribution approxi-
mation. If we centralize the phenotype, it becomes a
degenerated U test, which follows a mixture chi-square
distribution.
The IU test can be extended to handle more than 2

levels of omic data. For instance, a modified IU test
can be applied for 3 levels of omic data. Besides the
SNVs and gene expression, we further introduce Ri as
the DNA methylation for subject i, and use kernel matrix

K3(·, ·) to measure the DNA methylation similarities.
The IU test statistic can then be defined as

Un = 1
n(n − 1)

∑

i �=j
K1(Yi,Yj)K2(Si, Sj)K3(Ri,Rj)

∫
Gi(t)Gj(t)dt.

The choice of K3 is similar to K1 and K2 as discussed
in “Methods” section. Following the same argument for
Theorem 1, we can show that this modified IU test also
follows an asymptotically normal distribution. In addi-
tion, with multiple genes (e.g., genes in a biological path-
way) and the corresponding gene expression levels, the
gene expression level S can also be modeled as a func-
tion. For such purpose, the similarity measure K2(Si, Sj)
can be modified as K̃2(Si(t), Sj(t)) where K̃2(·, ·) measures

Fig. 7 QQplot of the hypertension study using the proposed IU test, Adj-SKAT and VCT
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Table 3 Top 10 gene findings from the integrative analysis in a hypertension study

Name Chromosome Starting location Ending location # of SNVs p-value

UBAC1 9 138823836 138854205 287 9.86 × 10−5

MEGF11 15 66186838 66546725 2989 2.14 × 10−4

IFI44L 1 79085201 79112428 207 5.35 × 10−4

MFGE8 15 89440944 89457653 161 1.27 × 10−3

ANKDD1A 15 65203490 65251983 464 1.29 × 10−3

PDZD2 5 31798110 32111928 3655 1.96 × 10−3

TBX4 17 59532864 59561970 221 2.15 × 10−3

IGSF3 1 117116060 117211147 429 2.42 × 10−3

TMEM61 1 55445562 55458886 170 3.90 × 10−3

FAM46B 1 27330739 27340321 63 7.29 × 10−3

the similarity between two functions. The asymptotic
property can be derived based on the same argument for
Theorem 1. One potential limitation of this study is that
gene expression is assumed to be independent of SNVs.
One technical reason of making such assumption is that,
under the stochastic process setup, it is hard to model the
association between the gene expression variable S and
the underlying stochastic process SP(η(t),�(s, t)). Finding
an appropriate way to model correlations among omic
data is a challenging topic that is worth of further inves-
tigation. Nevertheless, if real data indicates correlations
among different levels of omic data, one way to overcome
this issue is to adopt methods introduced by [27] and [28].

Additional file

Additional file 1: The proof of Theorem 2.1 can be found in the
Appendix. (PDF 94 kb)
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