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Abstract

Background: It becomes clear that the increase in the density of marker panels and even the use of sequence data
didn’t result in any meaningful increase in the accuracy of genomic selection (GS) using either regression (RM) or
variance component (VC) approaches. This is in part due to the limitations of current methods. Association model
are well over-parameterized and suffer from severe co-linearity and lack of statistical power. Even when the variant
effects are not directly estimated using VC based approaches, the genomic relationships didn’t improve after the
marker density exceeded a certain threshold. SNP prioritization-based fixation index (FST) scores were used to track
the majority of significant QTL and to reduce the dimensionality of the association model.

Results: Two populations with average LD between adjacent markers of 0.3 (P1) and 0.7 (P2) were simulated. In
both populations, the genomic data consisted of 400 K SNP markers distributed on 10 chromosomes. The density
of simulated genomic data mimics roughly 1.2 million SNP markers in the bovine genome. The genomic
relationship matrix (G) was calculated for each set of selected SNPs based on their FST score and similar numbers of
SNPs were selected randomly for comparison. Using all 400 K SNPs, 46% of the off-diagonal elements (OD) were
between − 0.01 and 0.01. The same portion was 31, 23 and 16% when 80 K, 40 K and 20 K SNPs were selected
based on FST scores. For randomly selected 20 K SNP subsets, around 33% of the OD fell within the same range.
Genomic similarity computed using SNPs selected based on FST scores was always higher than using the same
number of SNPs selected randomly. Maximum accuracies of 0.741 and 0.828 were achieved when 20 and 10 K SNPs
were selected based on FST scores in P1 and P2, respectively.

Conclusions: Genomic similarity could be maximized by the decrease in the number of selected SNPs, but it also
leads to a decrease in the percentage of genetic variation explained by the selected markers. Finding the balance
between these two parameters could optimize the accuracy of GS in the presence of high density marker panels.
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Background
A large number of polymorphic variation (e.g., SNPs,
rare variants) is being identified across the genome of
livestock species. A continuous decrease in the costs of
high-throughput genotyping and sequencing techniques
has allowed for the generation of a massive amount of

genomic information on a large number of individuals.
This wealth of genomic information was useful in under-
standing the association between complex phenotypes
and genetic variation with applications in human, plants
and livestock species [2, 4, 15, 19, 29].
In livestock and plants, genomic information was

mainly used for breeding purposes. In fact, genomic en-
hanced breeding values (GEBV), which are computed as
a linear function of the SNP effects and their associated
genotypes, were accurately estimated through the so
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called genomic selection (GS). The latter is superior to
its pedigree-based counterpart due to a better modeling
of the Mendelian sampling and a substantial reduction
in generation interval. In fact, genomic selection (GS) is
becoming the standard tool for genetic evaluation in sev-
eral livestock and poultry species. However, the continu-
ous increase in the density of marker panels and number
of genotyped individuals and the presence of low (rare)
frequency variants are posing major challenges to GS.
Regression (RM) based approaches model directly the
association between the phenotype and variant geno-
types. The large number of unknown parameters in the
association model and the high LD will undoubtably lead
to noticeable shrinkage. Splitting the effect of a QTL be-
tween a large number of linked markers will negatively
affect the statistical power [20, 39]. Thus, it has become
a necessity to reduce the dimensionality through
prioritization (selection) of variants. Several approaches
including simple regression, Bayesian, and wrapper
methods [11, 22, 24, 33]) were frequently used for SNP
filtering. Unfortunately, their efficiency is limited mainly
due to the small marker effects and high false positives.
To offset the limitations of statistical methods, the use
of external information was proposed to enhance the
SNP prioritization process. MacLeod et al. [23] proposed
the BayesRC method where existing biological informa-
tion was used as external prior information. Although
attractive, it did not result in an increase in accuracy
compared to BayesR [17]. Chang et al. [6] proposed
using population genetic parameters that can be derived
from the existing marker data to enhance the
prioritization process. Their FST based prioritization re-
sulted in sight superiority compared to BayesB.
An increase in the number of variants does not dir-

ectly affect the dimensionality of the association model
using variance component (VC) based approaches, such
as GBLUP or ssBLUP [1, 16]. However, in their current
form they are unlikely to benefit from the use of infor-
mation provided by high density marker panels and next
generation sequencing (NGS). The superiority of GS
compared to pedigree-based selection using VC ap-
proaches is due to the use of the observed (G) rather
than the expected (A) additive relationship matrix which
allows for the correction of erroneous and unreported
pedigree information, and a better modeling of Mendel-
ian sampling [7, 8, 18].
Several studies have clearly shown that an increase in

SNP density, after a certain threshold, does not seem to
affect the quality of the estimated observed relationship
matrix G. In fact, accuracy obtained using the 777 K
SNP panel was not any different from using the 54 K
SNP panel [34, 35].
These challenges are further exuberated by the added

computational costs. For RM approaches, the

computational cost increases almost linearly with the in-
crease in the number of genotyped animals. However,
that is not the case with the increase in the number of
variants which will make the approach almost impossible
computationally when using sequence data. Such costs
will not be reduced even when methods for variant
prioritization (BayesB, BayesR) due to the cost of identi-
fying the “relevant” variants. For VC-based approaches,
the number of variants will have very little computa-
tional costs. However, the latter increases cubically with
the number of genotyped animals, complicating the dir-
ect inversion of G. The algorithm for proven and young
animals (APY) method developed by Fragomeni et al.
[13, 14] to approximate the inverse of G is intrinsically
data-driven and could result in computational problems.
As a data-driven approximation, its performance is not
guaranteed with a continuous increase in the number of
genotyped animals, which may span several generations
and have more complex pedigree structures (inbreed-
ing). As currently implemented, the ss-GBLUP method
does not benefit from high density genomic data.
Although prioritization methods based on statistical

(e.g., BayesB), external prior information (e.g., BayesRC),
and population genetics criteria (e.g., FST) have been fre-
quently applied in RM, little has been done to evaluate
the impact of marker prioritization on the estimation of
the genomic relationship matrix (G) and the potential
impact in GS using VC approaches [12]. The latter will
benefit from SNP marker prioritization for two reasons:
1) only relevant markers will be used to compute G, re-
moving the contribution of non-influential SNPs that
could increase or decrease the realized genetic similarity
between two individuals, especially for low MAF
markers; 2) some prioritization methods (e.g., based on
FST) could provide a simple and systematic approach for
weighting the contribution of different markers to the
estimation of G. For example, this could be accom-
plished by using the individual marker FST score as a
weight factor. In this study, a marker prioritization
method presented by Chang et al. [6] will be assessed for
its impact on the estimation of the genetic similarity be-
tween individuals and on the accuracy of GS. For that
purpose, SNP markers in high density panels will be pri-
oritized using FST score as suggested by Chang et al. [6].

Methods
Simulation: population structure
Data was simulated to mimic high-density marker panels
using the QMSim simulation software [31]. First, a his-
torical population (HP) was generated through random
mating to initialize LD and to establish mutation-drift
equilibrium. The HP was used as a base to create two
populations (P1 and P2) with average LD between adja-
cent markers of 0.3 and 0.7, respectively. Gametes were
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randomly sampled from both male and female gamete
pools. To produce a realistic level of LD in population
P1, 300 historical generations were generated based on
random mating of an initial 8000 animals, increasing to
15,000 animals at generation 305, decreasing to 12,000
animals at generation 1000, and then increasing to
17,000 animals at the last generation. For population P2,
the initial 8000 animals were also simulated for 300 gen-
erations but followed by an additional 5 generations with
15,000, 5 generations with 12,000, and 5 generations
with 17,000 animals. In a second step, 1000 males and
15,000 females were randomly selected from the histor-
ical population and used to create the founder popula-
tion (G0) for P1 and P2. A trait with heritability equal to
0.30 was simulated assuming that all genetic variation
was due to the simulated QTL. An additional 7 selection
generations (G1-G7) of 15,000 animals each were simu-
lated. Parents were chosen based on their estimated
breeding values (EBVs). The replacement rate for males
and females was 50 and 20%, respectively. Throughout,
one progeny per mating was assumed and the sex ratio of
progeny was set to 50%. The average effective population
size ranged between 323 and 350 for P1 and P2, respect-
ively. The sixth generation (G6) was considered as the
training population and the last generation (G7) was used
to evaluate (validation population) our proposed method.
In both populations, only animals in the training and

validation populations were genotyped. Genotypes were
simulated for 400 K biallelic SNP markers
uniformly-distributed along 10 chromosomes of 100 cM
in length each to roughly mimic 1.2 million SNP
markers in the bovine genome. Two hundred biallelic
QTL were sampled from a Gamma distribution with
shape parameter equal to 0. 4. No overlap between SNP
markers and QTL was allowed. Additionally, QTL were
assumed not to be genotyped. In general, the genotype
structures for P1 and P2 were similar with the exception
that P2 had higher LD between adjacent markers. The
residual variance was scaled accordingly in each scenario
of selected SNPs such that the heritability and pheno-
typic variance were constant at the values of 0.3 and 1,
respectively. Trait phenotypes were generated as the
sum of an overall mean, the random additive effects of
QTL and their associated genotypes, and the residual
terms. The later were sampled from a normal distribu-
tion with zero mean and variance-covariance matrices
Iσe

2, where σe
2 is the residual variance.

Real data
A real dataset consisting of weaning weight (WW) re-
cords of 3012 animals from a composite beef cattle
breed born between 2002 and 2011 at the USDA-ARS,
Fort Keogh Livestock and Range Research Laboratory,
Miles City, MT [27, 28] was used. The mean and

standard deviation of WW records were 209.58 and
30.73 kg, respectively. The systematic effects associated
with this data consisted of sex (2 classes), feeding treat-
ment (2 classes), year of birth (10 classes) and three co-
variates: age of dam, age at the weaning weight, and
birth weight. The pedigree file included 5374 animals.
These animals were genotyped with a mixture of different

density SNP commercial arrays. Only SNPs with call rate
greater than 0.90, minor allele frequency (MAF) greater than
0.05, and heterozygous deviation smaller than 15% from
Hardy-Weinberg Equilibrium (HWE) were kept. Animals
with call rate less than 0.90 were discarded. Animals geno-
typed with low-density panels were imputed to the 50K
SNP array using FImpute software [30]. The same QC
process was reapplied after imputation. The final dataset
consisted of 2193 animals genotyped for 41,694 SNP
markers. A five-fold cross validation (80% training set and
20% validation set) was used in the analysis of the real data.

Method of prioritizing SNPs: FST approach
Wright’s fixation indexes, FST in particular, have been
used to measure the level of variation among subpopula-
tions with respect to the variation in the total popula-
tion. FST measures genetic differentiation through the
change in allele frequencies among groups. The greater
the divergence between subpopulation, the larger are the
FST scores. In this study, FST scores were calculated fol-
lowing the estimators presented by Nei [26] and Chang
et al. [6]. Briefly, animals in generation 6 (G6) were
grouped into three sub-populations (below the 5% quan-
tile [S1], between 5 and 95% quantiles [S0], and above
the 95% quantile [S2]) based on the distribution of their
phenotypes. Genotypes of individuals in sub-populations
S1 and S2 (1500) were used to calculate the FST scores.
For each locus, the global FST estimator was defined as:

FST ¼ HT−HS

HT

with HT ¼ 2�p� q;

HS ¼ HS1
� nS1 þ HS2

� nS2
nS1 þ nS2

; and

HSi ¼ 2� pSi
� qSi

where, pSi and qSi are the allele frequencies in subpopu-
lation i, ns1 and ns2 are the number of individuals of the
subpopulations, HS is the average of sub-population het-
erozygosities and HT is the heterozygosity based on the
total population.

Genetic similarity
Historically, genetic similarity between individuals is
measured by their average expected additive relationships
derived from pedigrees. With the availability of genetic
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markers, SNP panels with reasonable density provide an al-
ternative tool to estimate genetic similarity based on realized
relationships or other measurements. Currently, genomic re-
lationships are calculated based on identity by state (IBS) be-
tween alleles of SNP markers [37]. It basically measures the
similarity of marker genotypes between two individuals at a
large number of loci independently of their mode of inherit-
ance. Although estimated realized relationships using IBS
are in general better than pedigree-based estimates, they still
suffer from several problems, including the non-zero esti-
mates of realized relationship between two individuals that
are not related by ancestry [3, 9, 21] and the inevitable noise
associated with these estimates. More importantly though is
that as the SNP marker density increases, after a certain
threshold, it seems not to affect the quality of the estimated
observed relationships. The accuracy obtained using the
777 K SNP panel is not different from using the 54 K SNP
panel [34]. This is because the 777K panel did not improve
the quality of realized genomic relationships in any signifi-
cant way. Thus, in the presence of high density marker data,
using all SNPs to estimate genetic similarity will not improve
the genomic relationships. To the contrary, it could lead to
less accurate estimates of genetic similarity. This clearly indi-
cates that true genetic relationships could be accurately esti-
mated by a reasonably small number of well distributed
SNP markers. From genomic selection perspectives, the lack
of improvement in accuracy using high density panels is not
due to the lack of useful information in the additional
marker genotypes, rather, it is due to the limitations of
current methods. This functional similarity will likely be
higher than the standard additive relationships from all
SNPs if it is calculated based on a selected subset of SNPs
prioritized based on their ability to increase genetic or
phenotypic similarity between individuals. As the marker
density increases, especially in the presence of SNPs with
low minor allele frequency, prioritization of SNP markers to
be included in the calculation of the genomic similarity be-
comes more relevant. This is the case because as the num-
ber of SNPs increases, the genomic relationships move
closer to the expected relationships. Furthermore, variants
with rare allele frequencies will have a very limited influence
on the calculation of G, as most of the animals will have the
same genotype (homozygous major). Using prioritized SNPs,
it is likely to result in an increase in genomic similarity be-
tween individuals of similar genetic values or phenotypes.
This is the case as individuals with dissimilar genetic values
or phenotypes are likely to have much lower genomic shar-
ing. Genomic similarity between two individuals (i and j)
was calculated as:

sim i; jð Þ ¼ 1
2n

Xn

k¼1
Sk i; jð Þ ð1Þ

where Sk(i, j) is the number of IBS shared alleles between
individuals i and j at locus k. Genetic similarity was

computed based on all SNPs in the panel and subsets of
2.5, 5, 10, 20, 40, 80 and 160 K markers selected either
based on FST scores or at random.

Statistical model and data analysis
For both simulated populations (P1 and P2), 10,000 and
5000 animals were randomly selected from G6 and G7,
respectively. For each population, several data sets with
different number of SNPs (from 10 to 400 K) selected ei-
ther using FST scores or at random were generated. Data
was analyzed using the following mixed linear model:

y ¼ Xbþ Zuþ e

Where y is the vector of phenotypes, b is the vector of
fixed effects, u is the vector of genomic breeding values,
and e is the vector of random residuals. X and Z are
known incidence matrices with the appropriate dimen-
sions. Additionally, it was assumed that u � Nð0;Gσ2uÞ
where G is the genomic relationship matrix and σ2u is
the genetic variance.
AIREMLF90 program, a modification of restricted

maximum likelihood (REML) approach with the
Average-Information algorithm [25], was used to esti-
mate variance components and genomic breeding values
under the different scenarios. Accuracy of genomic
evaluation was defined as the correlation between true
breeding value and the genomic estimated breeding
value in validation population. In this study, each simu-
lation scenario was replicated 5 times.

Results
The distribution and effects of simulated 200 QTL are
presented in Fig. 1a, and the estimated FST scores of the
400 K SNPS are shown in Fig. 1b for the scenario when
the LD between adjacent markers equals 0.7 (Add-
itional file 1: Figure S1 represents the results for
population P1). Subsequently, the distribution of sim-
ulated QTL across the 10 chromosomes based on
their FST score for population P2 (LD = 0.7) for the
top 10 K and 5 K selected SNPs, are represented in
Fig. 2a and b, respectively. The estimates of func-
tional genomic similarity based on the number of se-
lected SNPs are presented in Table 1 and the
relationship between the matrices G and A when se-
lected subsets of SNPs are used is shown in Table 2
and Fig. 3. Estimates of the variance components and
their associated standard deviations under different
scenarios of preselection SNP markers used to com-
pute G are presented in Table 3. Using all SNPs in
the 400 K panel resulted in genomic accuracy of 0.716
and 0.760 for P1 and P2, respectively (Table 4). When
SNPs were prioritized based on their FST scores, ac-
curacy ranged between 0.723 to 0.741, and 0.784 to

Chang et al. BMC Genetics           (2019) 20:21 Page 4 of 10



0.828 for P1 and P2, respectively (Table 4). The results
of the analysis of real data under different numbers
of selected SNPs are presented in Table 5.

Discussion
Distribution of QTL and estimated FST values
The efficiency of a marker prioritization method de-
pends on its ability to track all the QTL controlling a
trait and in a worst case scenario it should track the
most influential ones. Similar to the results obtained
by Toghiani et al. [36] and Chang et al. [6], there is a
striking similarity between the distribution of QTL ef-
fects and estimated FST scores. In fact, there was an
almost perfect overlap between the peaks in Fig. 1a
(QTL with large effects) and Fig. 1b (SNPs with large
FST scores). This overlap persists even for QTL with
moderate to small effects indicating the ability of FST
scores to track the distribution and effects of the ma-
jority of simulated QTL. Obviously, the ability to

track QTL using FST scores depends primarily on the
heritability of the trait, the genetic variance explained
by the QTL, the population structure, and LD be-
tween markers and QTL and among markers. For
population P2, 50, 27 and 21% of QTL explained less
than 0.1, between 1 and 0.1 and greater than 1% of
genetic variance each. Similar percentages were ob-
served for population P1. Although this distribution
of QTL effects is unlikely in human populations, it is
not unexpected in highly selected plant and animal
populations. From the distribution of simulated QTL
across the 10 chromosomes (Fig. 2a and Fig. 2b) it is
clear that the majority of QTL are tracked by more
than one SNP and only QTL with very small effects
(< 0.01% of genetic variance) were not effectively
tracked (e.g., first QTL in the lower end of chromo-
some 4). Over 85 and 78% of the genetic variance
was tracked by the 10 K and 5 K preselected SNPs,
respectively.

Fig. 2 Distribution of the 200 simulated QTL (in blue) and 10 K (a) and 5 K (b) preselected SNPs based on FST scores (in red) across the 10
chromosomes when LD between adjacent markers was equal to 0.7 (* indicates the top 10% QTL)

Fig. 1 Effects and distribution of the 200 simulated quantitative trait loci (QTL) along the ten chromosomes (a) and their associated FST scores
distribution (b) when the LD between adjacent markers was equal to 0.7
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Dissection of genomic relationship matrix and genetic
similarity
The functional genomic similarity based on different
number of selected SNP is presented in Table 1. Under
the random scenario, genomic similarity was the same
across the different SNP densities and when all 400 K
markers were used. This is in line with the limited im-
provement in the estimation of the genomic relation-
ships with the increase of marker density [11, 34, 38].
However, when SNPs were prioritized based on their FST
scores, functional similarity increased with the decrease
in the number of selected markers and was higher than
its counterpart in the random selection scenario.
Prioritization based on FST scores resulted in a 0.5 to
1.5% increase in genetic similarity across the different
marker densities (Table 1).
When constructed from a sufficiently large number of

randomly selected markers, the G matrix is a good esti-
mator of the true additive relationships between individ-
uals [5, 10]. However, when a subset of markers selected
based on FST scores is used to compute G, the resulting
matrix tends to maximize the association between phe-
notypes and genotypes rather than to estimate additive

relationships between individuals. Thus, it is expected
that G computed based on all markers, or even a subset
of randomly selected markers will be closer to the
pedigree-based kinship matrix (A) than when markers
are preselected based on FST scores. This is clearly
shown in Table 2. This is the case because the contribu-
tion of a SNP marker to the estimation of G is intrinsic-
ally weighted by its MAF, not the magnitude of its effect.
Thus, after a certain threshold on the number of SNP
markers is reached, little to no improvement is expected
in G and ultimately in the performance of the associ-
ation model with additional markers. The limited change
in G with additional markers could be an indicator of
the sufficiency of available SNPs in estimating the real-
ized relationships. However, such sufficiency is not a
guarantee of the optimality of the matrix for the imple-
mentation of association analyses. In fact, as the number
of randomly selected SNPs increased from 20 K to 400
K, the matrix G gets closer to the expected additive rela-
tionship matrix (A) as indicated in Table 2. The matrix
G computed based on a selected subset of 20 K markers
is markedly different from A, especially in the tails of
the distribution of off-diagonal elements indicating
higher genetic similarity between individuals (Fig. 3).
More importantly, larger genomic similarities between
training and validation individuals were observed when
subsets of SNP markers were selected based on FST
scores (Table 2). The portion of genomic relationships
between training and validation individuals exceeding
0.05 in absolute value ranged between 0.50 and 3.83%
when all 400 K or random subsets (80 K, 40 K and 20 K)
of SNPs were used. The same portion was 4.98, 14.55
and 30.75% when 80 K, 40 K and 20 K SNPs were se-
lected based on FST scores (Table 2) and it was statisti-
cally different from the previous one (p < 0.05).

Variance components and accuracy of estimated
breeding value
As expected, the percentage of the genetic variance re-
covered increased with the increase in the number of

Table 1 Functional genomic similarity under different subsets
of FST based and randomly selected SNPs for the scenario when
LDa between adjacent markers was equal to 0.7. Standard errors
of Functional genomic similarity are listed between parentheses

Genomic similarity

SNPs FST based Random

2.5 K 0.7013 (0.0020) 0.6695 (0.0003)

5 K 0.6862 (0.0020) 0.6687 (0.0003)

10 K 0.6752 (0.0010) 0.6682 (0.0002)

20 K 0.6718 (0.0006) 0.6678 (0.0001)

40K 0.6712 (0.0005) 0.6675 (0.0001)

80 K 0.6708 (0.0004) 0.6673 (0.0001)

160 K 0.6705 (0.0003) 0.6672 (0.0001)

400 K 0.6671 (0.0003) 0.6671 (0.0001)
aLD linkage disequilibrium

Table 2 Distribution of off-diagonal elements (OD) of the genomic relationships matrix corresponding to the training and validation
individuals under different selection criteria of SNP markers (in %)

20 K SNPs 40 K SNPs 80 K SNPs 400 K SNPs Pedigree

S1 R2 S R S R - -

OD < -0.05 15.47 1.79 7.30 1.64 2.42 0.66 0.11 0

-0.05 < OD < - 0.03 11.71 8.80 11.97 8.56 9.54 6.35 3.30 0

-0.03 < OD < - 0.01 14.96 23.79 19.60 23.93 23.16 24.72 24.43 0

-0.01 < OD < 0.01 16.19 32.57 22.98 33.1 30.78 37.96 45.91 60.09

0.01 < OD < 0.03 14.85 22.75 19.98 22.85 22.46 23.39 22.72 32.55

0.03 < OD < 0.05 11.54 8.26 11.62 8.02 9.09 5.96 3.15 5.25

OD > 0.05 15.28 2.04 7.25 1.90 2.56 0.95 0.39 2.11
1SNPs selected based on FSTscores;

2SNPs randomly selected
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SNPs used to compute G for both populations P1 and P2
(Table 3). When the LD between adjacent markers was
equal to 0.3 (population P1), less than half of the genetic
variance was recovered when G was estimated based on
2.5 K SNPs selected either randomly or using FST scores.
The percentage increased steadily to reach a maximum
when all 400 K SNP markers were used, at which point
over 83% of the genetic variance was recovered. The

inability to recover all the genetic variance in this case is
due to the large number of QTL with very small effects.
In fact, 55% of QTL have a true effect smaller than one
tenth of 1 % and an additional 20% of QTL have an ef-
fect smaller than 0.5% of the total genetic variance.
These small QTL are hard to track effectively when the
LD is moderate to low. Although the general trend was
similar when LD was set equal to 0.7 (population P2),

Fig. 3 Distribution of off-diagonal elements of the additive relationship matrix using a) all 400 K SNP markers (in blue), b) 20 K SNPs prioritized
based on their FST scores (in red), and c) pedigree information (in green)

Table 3 Variance component estimates (standard deviation)
under different subsets of FSTbased and randomly selected SNPs
for populations1P1and P2(average over 5 replicates)

P1(LD =0.3) P2(LD = 0.7)

GV2 RV3 GV RV

FST based

2.5 K 0.126 (0.017) 0.728 (0.027) 0.198 (0.029) 0.736 (0.006)

5 K 0.149 (0.016) 0.706 (0.030) 0.204 (0.005) 0.711 (0.001)

10 K 0.175 (0.023) 0.684 (0.037) 0.195 (0.009) 0.697 (0.004)

20 K 0.203 (0.031) 0.663 (0.044) 0.195 (0.007) 0.686 (0.007)

40 K 0.226 (0.041) 0.649 (0.052) 0.203 (0.009) 0.677 (0.007)

80 K 0.247 (0.048) 0.641 (0.055) 0.217 (0.008) 0.671 (0.008)

160 K 0.264 (0.045) 0.642 (0.047) 0.235 (0.008) 0.670 (0.008)

Random

2.5 K 0.104 (0.013) 0.834 (0.012) 0.155 (0.012) 0.788 (0.006)

5 K 0.139 (0.016) 0.796 (0.013) 0.185 (0.013) 0.757 (0.005)

10 K 0.173 (0.019) 0.762 (0.006) 0.215 (0.011) 0.730 (0.012)

20 K 0.203 (0.023) 0.733 (0.013) 0.234 (0.010) 0.712 (0.008)

40 K 0.227 (0.026) 0.710 (0.015) 0.242 (0.007) 0.703 (0.005)

80 K 0.238 (0.027) 0.770 (0.015) 0.246 (0.008) 0.699 (0.007)

160 K 0.242 (0.027) 0.696 (0.016) 0.250 (0.008) 0.696 (0.006)

Full panel

400 K 0.247 (0.027) 0.692 (0.016) 0.251 (0.007) 0.695 (0.006)
1P1: 200 QTLs and linkage disequilibrium (LD) between adjacent markers equal
to 0.3 and P2: 200 QTLs and LD between adjacent markers equal to 0.7;
2genetic variance, 3residual variance

Table 4 Accuracy of genomic prediction (standard deviation)
under different subsets of FST based and randomly selected
SNPs for populationsa P1 and P2 (average over 5 replicates)

Accuracyb

P1 (LD = 0.3) P2 (LD = 0.7)

FST based

2.5 K 0.724 (0.021) 0.805 (0.014)

5 K 0.736 (0.022) 0.823 (0.012)

10 K 0.740 (0.023) 0.828 (0.013)

20 K 0.741 (0.027) 0.824 (0.013)

40 K 0.735 (0.027) 0.815 (0.014)

80 K 0.728 (0.028) 0.802 (0.012)

160 K 0.723 (0.031) 0.784 (0.013)

Random

2.5 K 0.600 (0.054) 0.669 (0.019)

5 K 0.640 (0.047) 0.709 (0.015)

10 K 0.676 (0.036) 0.736 (0.019)

20 K 0.695 (0.037) 0.746 (0.014)

40 K 0.707 (0.034) 0.754 (0.010)

80 K 0.712 (0.033) 0.757 (0.013)

160 K 0.715 (0.031) 0.759 (0.011)

Full panel

400 K 0.716 (0.032) 0.760 (0.011)
aP1: 200 QTLs and linkage disequilibrium (LD) between adjacent markers equal
to 0.3 and P2: 200 QTLs and LD between adjacent markers equal to 0.7;b

correlation between true and predicted breeding values
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the percentage of genetic variance explained for a given
number of SNPs was in general higher than in P1 (Table
3). This is especially the case for the random selection
scenario and when the number of SNPs used to estimate
G was small for the FST score-based selection approach.
Estimates of the residual variance were almost identical
to the true value (0.7) when all 400 K SNPs were used to
compute G. For the random selection scenario, there
was an over-estimation of the residual variance, except
for the case when 160 K SNPs were used (Table 3). This
is largely due to under estimation of the genetic vari-
ance. When SNPs were prioritized based on their FST
scores, the residual variance is over-estimated when the
number of markers used to calculate G was small (< 5 K)
and under-estimated when the number of markers ex-
ceed 40 K. In between these two numbers of selected
SNPs, the residual variance was precisely estimated
(Table 3).
The genomic accuracy was 0.716 and 0.70 for P1 and

P2, respectively when all 400 K SNP panel was used
(Table 4). Genomic selection relies on the assumption
that QTL are in LD with at least one of the SNPs in the
panel. Thus, the higher accuracy in P2 is due to the in-
crease in LD between adjacent SNP markers and ultim-
ately between markers and QTL. Across all random
subsets (2.5 to 160 K SNPs), accuracy increased with the
increase of the number of selected SNPs under both 0.3
and 0.7 LD scenarios. Further, accuracy was always
smaller than when all 400 K SNPs were used (Table 4).
When SNPs were prioritized based on their FST scores,
accuracy ranged between 0.723 to 0.741, and 0.784 to
0.828 for P1 and P2, respectively (Table 4). However, ac-
curacy did not increase continuously with the increase
in the number of selected SNPs. Accuracy reached a
maximum of 0.741 and 0.828 at around 20 and 10 K

selected SNPs for P1 and P2, respectively. This inter-
mediate optimum behavior of the accuracy seems to be
the result of a balancing act between the percentage of
the genetic variance explained by the selected SNPs and
the resulting genetic similarity between individuals based
on those markers. An increase in the number of priori-
tized SNPs will increase the percentage of the captured
genetic variance (Table 3) and will ultimately result in
higher accuracy. However, such an increase in the num-
ber of selected SNPs will reduce the genetic similarity
between individuals in the training and validation sets
(Table 1), which will lead to a reduction of accuracy. At
some point, the benefits resulting from the increase in
the percentage of captured genetic variance will not off-
set the cost (loss of accuracy) due to the reduction in
genetic similarity. This behavior does not occur in the
random selection scenario due to the minimal change in
the genetic similarity with the increase in the number of
SNPs (Table 1). Thus, accuracy is largely under the con-
trol of the percentage of captured genetic variance.

Analysis of real data
When all 50 K SNPs were used to compute G, accuracy,
defined as the correlation between the estimated gen-
omic breeding values and the corrected phenotypes (ad-
justed for the estimated fixed effects) was equal to 0.27.
When 2.5, 5, or 20 K SNPs were randomly selected, ac-
curacy ranged between 0.25 and 0.27 (Table 5). However,
when the same numbers of markers were prioritized
using FST scores, accuracy was sustainably higher and
ranged between 0.33 and 0.36. Similarly, estimates of
heritability tended to be higher when SNPs were priori-
tized using FST scores. Except for the cases when 2.5 K
SNPs were prioritized, estimates of heritability were
within the range of the values reported in the literature
for the trait [32]. Based on the results in Table 5, the
proposed prioritization method seems to have main-
tained its superiority using real data.

Conclusions
High-density SNP panels and whole genome sequence
data were expected to increase the accuracy of genomic
selection in livestock. However, because of the limita-
tions of current methods used for implementation, an
increase in genomic data did not result in any significant
improvement of accuracy. The dramatic increase in the
dimensionality of the association models led to an
over-parameterization problem, such as increased
co-linearity and lack of statistical power. FST, a measure
of genetic differentiation, was used as an additional
source of information to prioritize SNPs in high-density
marker panels. Prioritized markers based on FST under
different scenarios were able to track the majority of
significant QTL and to increase the functional genetic

Table 5 Variance component estimates, accuracy of genomic
prediction, and heritability (standard deviation) under different
subsets of FST based and randomly selected SNPs for weaning
weight of beef cattle

Accuracya GVb RVc Heritability

FST based

2.5 K 0.36 (0.02) 91.39 (6.28) 321.41 (7.43) 0.22 (0.01)

5 K 0.36 (0.02) 119.32 (8.67) 299.13 (7.87) 0.29 (0.02)

20 K 0.33 (0.03) 144.94 (15.74) 286.10 (11.88) 0.34 (0.03)

Random

2.5 K 0.26 (0.04) 83.75 (13.99) 346.11 (12.57) 0.19 (0.03)

5 K 0.25 (0.03) 100.34 (17.60) 332.13 (15.87) 0.23 (0.04)

20 K 0.27 (0.01) 120.67 (15.30) 313.64 (11.87) 0.28 (0.03)

Full panel

50 K 0.27 (0.02) 128.08 (17.86) 306.69 (13.33) 0.29 (0.04)
acorrelation between adjusted phenotypes and predicted breeding values;b

genetic variance,c residual variance
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similarity between individuals. The latter could be maxi-
mized by the decrease in the number of selected SNPs.
Unfortunately, that will lead to a reduction in the per-
centage of genetic variation explained by the selected
markers. Thus, a balance between these two parameters
is needed in order to maximize the accuracy of GS in
the presence of high density marker panels. This balance
is likely to depend on the heritability of the trait and its
genetic complexity. However, given the simplicity and
flexibility of marker prioritization using FST the balance
could be easily identified empirically. As clearly shown
in this study, accuracy of genomic selection could be in-
creased using high density marker data and new imple-
mentation methods. As high density and sequence data
become more common, alternative methods, including
the approach presented in this study, will be needed to
fully harness the benefit of genomic selection. However,
several issues including marker prioritization in the
presence of multiple continuous and discrete traits and
their relative weights need to be addressed. Furthermore,
FST prioritization could be used in conjunction with
other approaches (e.g. hybrid models) to further enhance
the accuracy of genomic selection.

Additional file

Additional file 1: Figure S1. Effects and distribution of the 200
simulated quantitative trait loci (QTL) along the ten chromosomes (a) and
their associated FST scores distribution (b) when the LD between
adjacent markers was equal to 0.3 (DOCX 1094 kb)
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