Yao et al. BMC Genetics (2018) 19:98
https://doi.org/10.1186/s12863-018-0680-1

BMC Genetics

METHODOLOGY ARTICLE Open Access

An improved statistical model for

@ CrossMark

taxonomic assignment of metagenomics

Yujing Yao', Zhezhen Jin' and Joseph H Lee®*"

Abstract

different genomes.

large sample size datasets with high complexity.

for high complexity samples when compared with TAMER.

Background: With the advances in the next-generation sequencing technologies, researchers can now rapidly
examine the composition of samples from humans and their surroundings. To enhance the accuracy of taxonomy
assignments in metagenomic samples, we developed a method that allows multiple mismatch probabilities from

Results: We extended the algorithm of taxonomic assignment of metagenomic sequence reads (TAMER) by
developing an improved method that can set a different mismatch probability for each genome rather than
imposing a single parameter for all genomes, thereby obtaining a greater degree of accuracy. This method, which
we call TADIP (Taxonomic Assignment of metagenomics based on Dilfferent Probabilities), was comprehensively
tested in simulated and real datasets. The results support that TADIP improved the performance of TAMER especially in

Conclusions: TADIP was developed as a statistical model to improve the estimate accuracy of taxonomy assignments.
Based on its varying mismatch probability setting and correlated variance matrix setting, its performance was enhanced

Keywords: EM algorithm, Metagenomics, Taxonomic assignment

Background

As the next generation sequencing technologies continue
to advance at a rapid pace, it is now possible to identify
the presence of microorganisms with greater efficiency
and accuracy. Such studies can, in turn, help to explain
whether the presence or absence of certain species or spe-
cific genus contributes to disease processes of interest.
Biological samples taken from different parts of the hu-
man body as well as from different environment, such as
seawater, soil, etc. can be used to extract DNA, and then
those DNA samples can be analyzed as short reads of
~100 base pairs. To analyze these short reads, Basic Local
Alignment Search Tool (BLAST) is often used to identify
regions of similarity between nucleotide or protein se-
quences by comparing sequence reads from one sample to
sequences in reference databases. It then assesses the
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significance of matches, and, using a scoring matrix,
assigns reads to the taxonomy tree that most likely to
represent what had happened in the evolutionary process
[1, 2]. Here, a single sequence read can be matched to
multiple genomes because of sequence homology across
species as well as overlapping of sequences.

BLAST can potentially lead to inaccurate estimates
when errors occur in taxonomy assignment in the
context of metagenomic analysis [3-5]. To improve the
accuracy of taxonomy assignment, several algorithms
have been developed to optimize the use of BLAST
searches. Metagenome Analyzer called MEGAN is one
of the most commonly used analytical tool [4]. MEGAN
assigns matched reads to the least common ancestor in
the taxonomy tree when there are multiple matches to
different genomes [2], and because it assigns short reads
to one genome with the best match and ignores relevant
biological information with weak statistical significance,
MEGAN can lead to false findings. To address this issue,
Jiang and colleagues [2] introduced TAMER, which as-
signs metagenomic sequence reads with a mixture model
by estimating the probability for each read generated
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from the genomes. Based on analyses of both simulated
and real datasets, Jiang and colleagues [2] showed that
TAMER had a higher degree of accuracy and efficiency
compared to MEGAN. However, because TAMER assigns
equal mismatch probability for all genomes, TAMER will
experience difficulties when there exists a high degree of
complexity among data and a high degree of correlations
among microorganisms as in human microbiome samples.

In the present paper, we propose a statistical frame-
work: a Taxonomic Assignment of metagenomics based
on Different Probabilities (TADIP) method with the goal
of improving the accuracy of the estimates by setting
different mismatch probabilities for different candidate ge-
nomes. Unlike TAMER which sets the same mismatch
probability for different genomes, TADIP extends TAMER
to address the biological reality that: (1) different organ-
isms may have different genetic variants at homologous
loci; and (2) different organisms coexist within one micro-
bial community. Specifically, TADIP allows the true mis-
match probabilities for the genomes to be generated by
each genome’s own mismatch part plus systemic errors.
We also illustrate the use of a burden/variance component
test based on a logistic regression model to test the need
for a range of setting with varying mismatch probabilities
to reflect the complexity of samples. We evaluated TADIP
using both simulated and real datasets.

Methods

Data

This study uses the NCBI-NT data from the NCBI web-
site as a reference dataset, and uses BLASTn as the pri-
mary analytical tool for data analysis. Following the
BLASTn analysis, for each read and its corresponding
candidate genome, we mapped and recorded the read ser-
ial number, corresponding genome name, taxonomy iden-
tification number, matched length, and alignment length.
These variables constitute the input file for TADIP, which
is consistent with the input file for TAMER [2].

TADIP model

Model parameters

We first summarize known information from the BLAST
output which includes the following: # reads(x; denotes

the j read), k genomes (genome i denotes the i’ gen-
ome), L;; denotes alignment length for read j against gen-
ome i, M; denotes matched length. The parameters of

interest are: R; the true proportion of reads generated
from genome i or the probability of a read x; is generated
by genome i, R,'ZO,ZLI R; =1. p; the probability of
observing a mismatched base pair for genome i. Even if ;
could be generated from genome j, it is unlikely to match
100% because of potential errors involving sequencing,
alignment and among others.
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Likelihood

Because alignment lengths for sequence reads are nearly
the same, let L;=max{L;;i=1,2,...,k}, then the prob-
ability that a read x; is generated by genome i with M
matched base pairs, and L; - M;; mismatched base pairs

would be R,'pi (1 -p,)™. Therefore, the probability of
observing a read x; from the sample is:

ZRtpf M (1-p) (1)

Let 0= (p,R), p= (@1, ... 20", R=(R, Ry, ..., RY)", and
let D = (x, L, M) where x = (x1, ..., x,), L= (L1, ..., L,), M
denotes matched lengths for # reads against k genomes.
Assuming that the sequence reads are independent and
identically distributed random variables, the likelihood
and log likelihood of O are:

L(8|D) = H[Zzapf Mi(1-p )M ]

1(6]D) =

Z log

EM algorithm

The maximization of the log-likelihood is not straight-
forward. As in [2], an Expectation-Maximization (EM)
algorithm is used to obtain the maximum likelihood
estimators of @ by introducing latent variables Z = (Z,
Zs, ..o Zy)". The latent variable determines the genome
from which a sequence read originates, for example, for

each read j and each genome i:
1 iz =i
f(zf')_{o if zj= i

Then the probability of observing a read «x; from the
sample becomes:

ZRIP /

The log likelihood when the latent variables are ob-
served is:

1(6|D,Z) Z log[ZRlP,’ /i(l_pi)Mii[Z/—i]

n k

x,,z, 1 pz) ji]Zj:l' (2)

log |Ripf” ™ (1-p)"" | Lop-i (3)
j=1 i=1

Base on (3), the following EM algorithm can be used.
In the E-step of algorithm, let T}; denote the conditional
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distribution of the latent variable Z; given the current es-
timates of parameters 8 = (p?, R(t)) then

®
T}

Pr(Z» — 10", D)
R! )pl(t)L -Mj; (l_p(t))Mﬁ

4

= 4
(0 (OL-My (1 ()M @
S (1)

The expectation of the log likelihood (3) with respect
to Pr(Z;=i|8“,D) is: Q = Eyqu p[L(0]D, Z)] =

L;-Mj; ;
ijl Zi:l log(Rip;” ™ (1-p;) ’)Iz/-:i]

k
=1

Z\e wpl
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)7 [ tog (R ™ (1-p)") )
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In the M-step, the expected log likelihood (5) can be
maximized, which yields

t+1 _ ZTt) (6)

p£t+l) _ 1_/:;17 (7)

Repeat the E-step and M-step until the convergence of
the estimated values of parameters to obtain the esti-
mate of 0.

Taxonomic assignment of reads
Given the above information, we can then estimate the
probability that a read «x; is generated from genome i by:

1;-Mj;
i 1 !
py— Rip, (1-p)" (8)
ZR Lj=Mj 1 P) i
fori=1, 2, .., kand j=1, 2, ..., n. Then the read x; is

assigned to the genome for which the maximum esti-
mated value of probability is reached.

Hypotheses testing

The null hypothesis Hy:py=py=ps=...=p; for all p;
(or p=po where p=(py,....p)") can then be tested
against the alternative hypothesis H;: at least one pair of
p; is not equal (or p # py). If Hy is true, then the TAMER
method is valid to use. On the other hand, if Hj is
rejected, then the TAMER method is not valid, and the
TADIP method is appropriate.
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Wald test
Using the estimate p from the TADIP method, the Wald
test statistics W= (p—po)’ x Z~' x (p — po) can be used,
when the variance-covariance matrix ¥ of p is known.
W follows a x* distribution with k - 1 degree of freedom
under H,.

In practice, however, the variance-covariance matrix
(2) is often unknown. The dimension of the variance-co-
variance matrix (X) is equal to the number of genomes,
and the number of genomes can be large for most meta-
genomic samples. As a result, it is computationally diffi-
cult to obtain the inverse of the estimate even when it is
estimated using moment estimation methods for ex-
ample, and its inverse is very much likely to be singular
because of sparsity. Moreover, the Wald test often has
poor power under sparse alternatives [6]. To circumvent
this, we present two alternative tests that can be imple-
mented in practice.

Logistic regression model

One simple test is to use logistic regression models for
the mismatch probabilities. Recall that p; represents the
true mismatch probability of genome i which consists of
system errors that include sequencing errors, alignment
errors and SNPs. The system errors ought to be the
same for all genomes in the datasets processing steps,
but SNPs are not [7]. Assuming (1) true mismatch prob-
ability for each genome to be the sum of a fixed part
which comprise average system errors and (2) the gen-
ome dependent part denotes different adjustment (SNPs)
for each genome i, the following logistic regression
model can be used: logit(p) = & + V x B where the matrix
V takes value 1 in the diagonal and 1/(k-1) in the
non-diagonal. The model yields an estimate of fixed part
a which is exactly the logit (pp), and an estimate of B
which denotes the coefficient of random part of mis-
match probabilities for different genomes. Then test hy-
potheses are equivalent to the null hypothesis where Hy:
B =0 against the alternative hypothesis where H;:p = 0.
We can then apply two collapsing tests that are easier to
implement than the Wald test to metagenomic samples.

Burden test

The burden test collapses information for multiple ran-
dom variants into a single score [8] with the assumption
that a large proportion causal variants effects are in the
same direction and magnitude (See the variance compo-
nent test below for violation of the assumptions). The
magnitude of effects is adjusted by weight wherew = (w,
W, 9], e, Bi=Boxw; j=1, ..., n Let v; denote the
(i, j)th element of the matrix V, then the logistic regression
model can be expressed as logit(p) = a + C x 3y, where
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C=(Cy,...,C), with C; =377, w;xv;. The burden
test is to test where Hy: 8o = 0 with following test statistic

Qburden = (CT X (p_PO))Z
k

Z(i; wj X Vif) x (ﬁ,—po)r (9)

j=1

which follows a y* distribution with one degree of freedom
under Hy. The weight w; can be generated from the Beta
function where, w; = Bem(ﬁj,ahaz) [10]. Throughout
this paper, the empirical value for burden test parameters
of the Beta function is set to a;=96, a,=100.

Variance component test
When the assumptions of the burden tests are violated,
which are not infrequent, we can use the variance com-
ponent test method to deal with differences in directions
and magnitudes to take into account both positive or
negative effects [9]. Here, we present a variance compo-
nent test based on the kernel method.

In this variance component test, it is assumed that j;

2

follows a distribution with mean 0 and variance WiT.

Therefore, we test 7= 0 for the equality of all 8, j=1, ...,
n. The test statistic is:

Qver = (P—PO)T x K x (p-py)

k n 2
= (z "y x ) < (o)’
=1 \'i=1

(10)

where K =VTWYV. Under the Hy: 7=0, the test statistic
Qycr follows a mixture degree of freedom and it can be
asymptotically calculated by >/ ; 1;x3,. x3, means inde-
pendent y; variables, and A; are eigenvalues of Pé/ ZKP(I,/ 2,
where Py is the inverse of variance under the null and p-
values can be calculated using the Davies Method [10, 11].
Again, the weight w; is often generated from the Beta
function, where w; = Beta(p;,a1,a>). In this paper, the
empirical values for the variance component test parame-
ters were set to a; at 96 and a, at 100.

Simulation study

We performed simulation studies using MetaSim, the
first sequencing simulator for metagenomics. MetaSim
can generate a collection of reads with genome profile
settings that mimic existing sequencing platforms such
as Illumina, Roche 454, and Sanger [12]. To generate
realistic simulated data, MetaSim introduces sequencing
errors, SNPs, indels, inversions, translocations, copy
number variants (CNVs), short tandem repeats (STRs);
consequently, these features generate different mismatch
probabilities [13].
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To test our models, we generated datasets with the same
as well as different mismatch probabilities. Most existing
genomic next-generation sequencing simulation tools can
be set to generate data with the same mismatch probabil-
ity at the nucleotide base level. For example, MetaSim
uses a fixed value of error rate for the same nucleotide
base in one platform for a single run using a dataset. Em-
pirically, the error rates for Roche 454 ranged from 1.07 to
1.7%, while those for Illumina ranged from 0.0034 to 1%
[14]. Since we need to set the probabilities at the genome
level to be the same, we assumed that the dataset in one
sample generated from one approach (“fixed error model”,
henceforth) yielded the same mismatch probability at the
genome level with a small range of error rates. When the
datasets were generated from multiple approaches with
different error rates (“varying-error model”, henceforth),
however, different mismatch probabilities at the genome
level were expected.

Evaluation of burden test and variance component test

We compare the performance of the burden test and vari-
ance component test by estimating empirical type I error
and power using simulated datasets. To evaluate type I
errors, we generated 100 datasets using an one fixed error
model, where all genomes in the datasets were assumed to
have the same mismatch probability. The burden test and
variance component tests were used with weights generated
from the Beta function where Beta(p;, 96, 100). The empir-
ical type I error rate was estimated using the proportion of
p values less than a = 0.05. To evaluate power, we generated
100 datasets with 1000 reads, where half of the dataset of
one genome being generated from the one error-rate
approach and the other half generated from the other
error-rate approach (specifically “varying-two-error model”,
henceforth). Therefore, two genomes in the datasets were
assumed to have two different mismatch probabilities.
Again, the burden test and variance component tests were
used with weights generated from the Beta function where
Beta(p, 96, 100). The empirical power was estimated using

the proportion of p values less than a < 0.05.

Comparison of TAMER and TADIP methods

To determine whether or not TADIP improves the accur-
acy of taxonomy assignment, we simulated three bench-
mark datasets with low (2 genomes, simLC), medium (9
genomes, simMC), high (15 genomes, simHC) complexity.
We generated these three benchmark datasets under the

Table 1 Simulation results for evaluation of the tests

Tests Burden Test Variance Component Test
a 0.05 0.02
1-B 099 1.00

Type | error and power of 100 simulation datasets with 1000 reads per set
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Table 2 Results for simulation study: Long reads. The proportions of reads correctly (TP) and incorrectly (FP) assigned to taxonomy
tree at different ranks of two methods with average length of 500 bp

simLC simMC simHC

TAMER TADIP TAMER TADIP TAMER TADIP
Rank TP FP TP FP TP FP TP FP TP FP TP FP
Species 1.0000 0.0000 1.0000 0.0000 0.9229 0.1731 0.9229 0.1004 0.9565 0.0273 0.9565 0.0165
Genus 1.0000 0.0000 1.0000 0.0000 09233 0.1731 09233 0.0999 0.9644 0.0194 0.9644 0.0087
Family 1.0000 0.0000 1.0000 0.0000 0.9995 0.0965 0.9995 0.0767 0.9838 0.0000 0.9838 0.0000
Order 1.0000 0.0000 1.0000 0.0000 0.9995 0.0965 0.9995 0.0766 0.9838 0.0000 0.9838 0.0000
Class 1.0000 0.0000 1.0000 0.0000 1.0000 0.0960 1.0000 0.0747 0.9838 0.0000 0.9838 0.0000
Phylum 1.0000 0.0000 1.0000 0.0000 1.0000 0.0960 1.0000 0.0747 0.9838 0.0000 0.9838 0.0000
Kingdom 1.0000 0.0000 1.0000 0.0000 1.0000 0.0960 1.0000 0.0747 0.9838 0.0000 0.9838 0.0000

varying-error model with two different read lengths:
500 bp and 150 bp. First, we generated each dataset from
a number of genomes that included 10,000 reads with the
average length of 500 bp (‘long reads, henceforth). Second,
we generated the same set of simulated data with an aver-
age read length of 150 bp (‘short reads, henceforth). With
these simulated datasets, we compared the performance
of TAMER and TADIP by estimating the proportion of cor-
rect assignment (true positive (TP)) and the proportion of
incorrect assignment (false positive (FP) at different tax-
onomy ranks. Incorrect assignment includes reads that were
aligned incorrectly or overmatched. Here, TP represents the
number of correctly assigned reads / the total number of
reads (10,000). FP represents the number of incorrectly
assigned reads / the total number of reads (10,000).

Real data study

Using TADIP, we examined eight oral datasets from hu-
man oral cavity (http://www.mg-rast.org) [15], and 11
gut datasets (https://www.ncbi.nlm.nih.gov) [16] gener-
ated from two real metagenomic studies. The oral cavity
study compared the metagenomics in four groups:
healthy controls who never had caries against patients
who had been treated caries; those who had active caries;

and those who had cavities. Each group contributed two
samples. The datasets included ~ 2 million reads in total,
and the average read length was 425 + 117 bp, repre-
senting the long reads. The smallest samples had ~
70,000 reads, while the largest sample had ~ 465,000
reads [15]. In addition, we examined 11 human gut data,
obtained from a study of Crohn’s disease, an inflamma-
tory bowel disease (https://www.ncbi.nlm.nih.gov) [16].
Crohn’s disease results in changes of microbial commu-
nity in the human gut [17]. This dataset comprised
seven healthy donors and four donors with Crohn’s dis-
ease. The whole genome reads were generated using the
[lumina platform, and the average length of the whole
genome is 119 bp, representing the short reads [16].

Results

Type | error and power

Table 1 shows that the burden test was less conservative
than the variance component test where the empirical
type I error for the burden test was 0.05 and that for
variance component test was 0.02. Table 1 further shows
that two tests were valid and powerful, despite the rela-
tively small sample size. Specifically, the power estimate

Table 3 Results for simulation study: Short reads. The proportions of reads correctly (TP) and incorrectly (FP) assigned to taxonomy
tree at different ranks of two methods with average length of 150 bp

simLC simMC SimHC

TAMER TADIP TAMER TADIP TAMER TADIP
Rank TP FP P FP P FP TP FP P FP TP FP
Species 0.7102 0.0000 0.7102 0.0000 0.6704 0.0398 0.6704 0.0065 0.7113 0.0242 0.7289 0.0055
Genus 0.7102 0.0000 0.7102 0.0000 06704 0.0398 0.6704 0.0051 0.7113 0.0242 0.7289 0.0055
Family 0.7102 0.0000 0.7102 0.0000 0.7102 0.0000 0.7102 0.0000 0.7002 0.0353 0.7002 0.0342
Order 0.7102 0.0000 0.7102 0.0000 0.7102 0.0000 0.7102 0.0000 0.7002 0.0353 0.7002 0.0342
Class 0.7102 0.0000 0.7102 0.0000 0.7102 0.0000 0.7102 0.0000 0.7337 0.0018 0.7337 0.0018
Phylum 0.7102 0.0000 0.7102 0.0000 0.7102 0.0000 0.7102 0.0000 0.7337 0.0018 0.7337 0.0018
Kingdom 0.7102 0.0000 0.7102 0.0000 0.7102 0.0000 0.7102 0.0000 0.7337 0.0018 0.7337 0.0018
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for the burden test was 0.99, while that for the variance
component test was 1.00.

Comparison of TAMER and TADIP methods

We compared the performance of TAMER and TADIP
using three datasets with low, medium and high levels of
complexity as defined by the number of genomes (ie.,
simLC, simMC, and simHC). Datasets with different mis-
match probabilities were tested for both long and short
reads. Table 2 shows the results for the long reads, and
Table 3 represents the results for short reads.

Low level complexity with two genomes

For datasets with long reads, the simulation study revealed
that, at the level of Species, both TAMER and TADIP
assigned 100.0% of the reads correctly, and had 0.00% false
assignments. It is evident that the numbers of reads that
TAMER and TADIP assigned were close to the true values
at the level of Species (Fig. 1). However, the p-values of
the burden test and variance component test were less
than 0.05. This is because of different taxonomic

Table 4 Simulation results of hypothesis testing for three
benchmark data sets. Test results of burden test and variance
component test indicating the need of different mismatch
probabilities setting in the models of these simulation samples

Group Tests Burden Test Variance Component Test
simLC Long reads 0.0004 0.02
Short reads 0.131 0.009
SimMC Long reads <0.0001 <0.0001
Short reads 0.002 <0.0001
simHC Long reads < 0.0001 < 0.0001
Short reads < 0.0001 < 0.0001

composition, different genomes were assigned to the sam-
ple based on TAMER and TADIP, though these genomes
belong to the same species. When the datasets with short
reads were examined in Table 3, the rates of TP were
lower than those in long reads, and this is most likely due
to low matching rate from BLAST. Both TAMER and
TADIP assigned 71.0% of the reads correctly at the at all
rank levels and had 0.00% false assignments. The p-values
of the burden test and variance component test were
0.131 and 0.009, respectively (Table 4). The test results in-
dicate that TAMER and TADIP are both appropriate to
use in this simplest setting.

Medium level complexity with nine genomes

For the datasets with long reads, TAMER assigned 92.3%
of the reads correctly at the level of Species and had
17.3% false assignments. On the other hand, TADIP
assigned 92.3% of the reads correctly and has 10.0% false
assignments (Table 2). Note that the sum of TP and FP
is greater than 1 under this setting due to the occurrence
of multiple assignments. We then counted the numbers
of reads that TAMER and TADIP assigned were close to
the true value at the level of Species (Fig. 2). Particularly,
the assignment number of Escherichia coli, Francisella
tularensis and Shigella dysenteriae using TADIP was
notably close to the truth. We then tested the datasets
with short reads. TAMER assigned 67.0% of the reads
correctly at the level of Species, and had 3.98% false as-
signments, while TADIP assigned 67.0% of the reads cor-
rectly and has 0.65% false assignments (Table 3). The
assignment number of Escherichia coli, Shigella dysen-
teriae using TADIP in this simulation was notably close
to the truth, however, the detected number of Francisella
tularensis,  Pasteurella  multocida,  Pseudomonas
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entomophila, Pseudomonas fluorescens are less than the
truth both for TAMER and TADIP as shown in Fig. 2,
which contribute to the decrease of TP. The p-values for
the burden test and variance component test of two
simulation studies were less than 0.05, suggesting that it
was appropriate to use TADIP in this setting.

High level complexity with 15 genomes

For the datasets with long reads, TAMER assigned 96.4%
of the reads correctly at the level of Genus, and had
1.94% false assignments. On the other hand, TADIP
assigned 96.4% of the reads correctly, and had 0.87%
false assignments (Table 2). It is evident that the num-
bers of reads that TAMER and TADIP assigns were
close to the true values at the level of Species, even
though there were differences in subspecies or strain.
The assignment number of Escherichia and Shigella in

this simulation using TADIP is closer to the truth
(Fig. 3). For the dataset with short reads, TAMER assigns
71.1% of the reads correctly at the level of Species, and
has 2.42% false assignments. TADIP assigns 72.9% of the
reads correctly and has 0.55% false assignments (Table
3). The assignment number of Escherichia and Shigella
using TADIP is also closer to the truth (Fig. 3). In the
meanwhile, the assigned number is less than the truth
over half of the species both for TAMER and TADIP.
The p-values of burden test and variance component
test were close to 0 and less than 0.05, respectively.

As the complexity increases, TADIP performs better
than TAMER, especially for generating lower levels of FPs.
The three levels of complexity for simulation showed that
TADIP performed better than TAMER, when mismatch
probabilities were different across datasets. However, the
enhancement is weakened when the length of the reads
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Fig. 3 Results for high level complexity simulation study. Numbers of reads assigned using TAMER and TADIP were compared with the true values at
the level of Species for the simHC with long read length(a) and short read length (b)
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was shorter such that the likelihood of low matching rate
of each assignment increased.

Oral metagenomics

We identified approximately 2500 species in these eight
oral samples, comprising two controls and six patients
(grouped by treated caries, active caries, cavities), and the
number of identified species varied by sample ranging from
700 to 1400. We estimated the proportions of reads
assigned to the dominant Classes based on TADIP as
shown in Additional file 1: Figure S1 and Table S1. Under
the TADIP analysis, we can observe that in general diseased
samples had more Bacteroidia, Fusobacteriia at the rank
level of Classes than the healthy samples. On the other
hand, controls had more Gammaproteobacteria that were
seem to be absent in five diseased samples. In addition, the
proportions of Betaproteobacteria and Actinobacteria be-
haved oddly in the first and last patient samples, and some
other Class such as Epsilonproteobacteria, Coriobacteriia
appeared in samples with caries or cavities. As the eight
samples were chosen with a range of clinical features, there
was a large variation among the samples, indicating the in-
dividuation in oral samples. Under the TAMER analysis,
most of estimated proportions of dominant Classes were
similar with the result of TADIP, except for evident differ-
ences in the bar plot of first patient with treated caries
(Fig. 4). TAMER identified less Bacilli and Fusobacteria
and Gammaproteobacteria than TADIP. It is of interest to
note that the results from TADIP were more consistent to
the results in the original published [15], i.e., the amount
of Gammaproteobacteria of that patient ought to be the
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largest of all eight samples. The result of burden test also
showed that there were significance differences between
the mismatch probabilities among different genomes.

Gut metagenomics

Around 300 dominant species were assigned in 11 gut
samples consisting seven controls and four patients with
Crohn’s disease. Fig. 5 shows that the estimated propor-
tions of reads assigned to the dominant Phylums based
on TADIP. Under the TADIP analysis, the four major
Phylum in the human gut were Firmicutes, Bacteroi-
detes, Actinobacteia and Proteobacteria, replicating the
earlier published results [16]. In our analysis, Verrucomicro-
bia was in high abundance compared with Proteobacteria,
and Actinobacteia in three healthy samples and one patient
sample (Fig. 5). This agrees with some findings in human
gut that Verrucomicrobia can be occasionally observed (3,
18]. In general, the proportions of the phylum Proteobac-
teria and Actinobacteia were higher in Crohn’s disease
patients than in healthy controls. In addition, the propor-
tions of Firmicutes and Bacteroidetes were unusual in the
samples from the first two Crohn’s disease patients, indicat-
ing that they might have been over-represented or depleted.
These observations on samples from Crohn’s disease pa-
tients agree with previous findings [19-24], supporting the
notion that the causes of Crohn’s disease among patients
vary widely. Under the TAMER analysis, most of estimated
proportions of dominant Phylums were similar to the results
from the TADIP analysis where fewer Phylums were de-
tected in the second diseased sample and the sixth control
sample (Additional file 1: Figures S2-S3 and Tables S2-S3).
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The burden test showed that there were significance differ-
ences at the significance level of 5%, indicating that the mis-
match probabilities among genomes were significant.

Discussion

We have proposed a statistical framework called TADIP
to improve the estimate accuracy of taxonomy assign-
ments in metagenomic data. This approach extends the
TAMER method and allows efficient analysis of metage-
nomics data by allowing different mismatch probabilities
to different candidate genomes, rather than using one
common mismatch probability for an array of different
genomes.

It has been shown that TAMER performs better than
MEGAN at high taxonomic ranks and estimates with a
greater degree of accuracy at the genus level or even at
the species level [2]. However, TAMER does not perform
well in samples with a high degree of complexity. Our
study has demonstrated that TADIP performed better for
high complexity samples, because TADIP takes into
account the correlations among different genomes with
different mismatch probabilities. Using simulated and real
datasets, we showed that TADIP can overcome some of
the problems faced by complex samples. When we tested
both simulation and real data incorporating significantly
different mismatch probabilities among samples, for
highly complicated samples, we showed that the burden
test and variance component tests may yield different re-
sults because of the opposite assumptions, especially when
sample size is large and these is a high degree of complex-
ity. A future work will apply a bootstrap method to further
explore this problem by resampling the original sequence
reads with replacement for the statistical inference.

BLAST is considered as a general-purpose tool of the
preprocessing step for metagenomics study, in which the
set of DNA sequences is compared against publicly avail-
able databases [4]. However, we can also use some other
efficient alignment tools such as BOWTIE [25] for short
reads. Output from these alignment tools can serve as in-
put for TADIP. The results from BLAST, Bowtie, and
TADIP are presented in Additional file 1.

We note that selection of the right match algorithm is
important. TADIP, TAMER and MEGAN rely on hom-
ologous searches of the sequence reads in the reference
databases, and these algorithms do not perform well
when the reads are generated from new genomes and
the reference databases contain limited genome data.
When a limited set of genomic data is available on novel
genus, order or higher level in the evolutionary tree, algo-
rithms that employ the sequence composition approach
that characterizes sequence reads phylogenetically, such as
PhyloPhythiaS and Phymm, performed substantially better
than other algorithms [26, 27].
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Conclusions

TADIP is developed as a statistical model to improve the es-
timate accuracy of taxonomy assignments. TADIP allows a
varying mismatch probability setting and a correlated vari-
ance matrix setting to mimic the biological reality (i.e., truth).
It performs better than TAMER for high complexity samples,
especially in samples that contain different species, where dif-
ferent mismatch probabilities are likely to be abundant.
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Additional file 1: Figure S1. | Heat maps for the representative Classes
of oral metagenomics data based on the TADIP (A) model and the
TAMER (B) model. Figure S2. | Heat maps for the representative Species
of gut metagenomics data based on the TADIP (A) model and the
TAMER (B) model. Figure S3. | Numbers of reads assigned using TAMER
and TADIP for the representative Phylums of gut metagenomics data.
Figure S4. | Comparison of Blast and Bowtie for the study of oral
metagenomics data. Table S1. | Tables for the estimated proportion of
reads assigned to representative Classes of oral metagenomics data
based on the TADIP model and the TAMER model. Table S2. | Tables for
the estimated proportion of reads assigned to representative Phylum of
gut metagenomics data(disease)based on the TADIP model and the
TAMER model. Table S3. | Tables for the estimated proportion of reads
assigned to representative Phylum of gut metagenomics
data(control)based on the TADIP model and the TAMER model.
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