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Comparative RNA-Seq analysis reveals a @
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(Rosa hybrida) petal defense against Botrytis
cinerea infection
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Abstract

Background: One of the most popular ornamental plants worldwide, roses (Rosa sp.), are very susceptible to
Botrytis gray mold disease. The necrotrophic infection of rose petals by B. cinerea causes the collapse and death of
these tissues in both the growth and post-harvest stages, resulting in serious economic losses. To understand the
molecular basis of rose resistance against B. cinerea, we profiled the petal transcriptome using RNA-Seq technology.

Results: We identified differentially transcribed genes (DTGs) in petals during B. cinerea infection at 30 h post
inoculation (hpi) and/or 48 hpi. Gene ontology term enrichment and pathway analyses revealed that metabolic,
secondary metabolite biosynthesis, plant-pathogen interaction, and plant hormone signal transduction pathways
were involved. The expression of 370 cell-surface immune receptors was upregulated during infection. In addition,
188 genes encoding transcription factors were upregulated, particularly in the ERF, WRKY, bHLH, MYB, and NAC
families, implying their involvement in resistance against B. cinerea. We further identified 325 upregulated DTGs in
the hormone signal transduction pathways. Among them, the brassinosteroid (BR)-related genes were the most
significantly enriched. To confirm the role of BR in Botrytis resistance, exogenous BR was applied to rose flowers
before the inoculation of B. cinerea, which enhanced the defense response in these petals.

Conclusions: Our global transcriptome profiling provides insights into the complex gene regulatory networks
mediating the rose petal response to B. cinerea. We further demonstrated the role of the phytohormone BR in the
resistance of petals to necrotrophic fungal pathogens.

Keywords: Rose, Botrytis cinerea, Transcriptome, Cell surface receptors, Transcription factors, Brassinosteroid,
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Background and the United States, while the major production of
Roses (Rosa sp.) are among the most important orna- roses occurs in Ecuador, Kenya, and other developing
mental plants, accounting for more than one-third of countries with low labor costs and a suitable climate.
the total cut flower industry worldwide [1, 2]. The global  For each rose flower, the transport distance from green-
consumer market for roses is mainly localized to Europe = house to market therefore averages more than 1500 km
and takes three to four days, during which time the
: : flowers are subjected to both abiotic and biotic stresses.
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initially governed by cell surface immune receptors that
detect pathogen-associated molecular patterns (PAMPs)
or damage-associated molecular patterns (DAMPs) from
the host [4]; however, only a few cell surface immune re-
ceptors have been reported to function in B. cinerea resist-
ance. Recently, WALL-ASSOCIATED KINASE1l in
Arabidopsis thaliana (AtWAK1) was shown to recognize
oligogalacturonides derived from plant cell walls following
their break down by fungal cell wall degradation enzymes,
and activate a downstream defense response to prevent
further infection by B. cinerea [5]. Moreover, RBPG1 (RE-
SPONSIVENESS TO B. CINEREA POLYGALACTURO-
NASES1) encodes a cell surface receptor-like protein
containing extracellular leucine rich repeats, which is able
to recognize endopolygalacturonases produced by B.
cinerea; however, the overexpression of RBPGI does not
increase the sensibility of Arabidopsis to Botrytis [6]. The
recognition of pathogens by plant immune receptors leads
to the activation of the immune responses, which often in-
clude the reprograming of phytohormone signals, the acti-
vation of pathogen-related transcription factors (TFs), and
the modification of cell walls.

Phytohormones are key components in both basal and
race-specific immunity. Ethylene (ET), jasmonate (JA),
salicylic acid (SA), and abscisic acid (ABA) have previously
been found to play crucial roles in the defense against Bo-
trytis [7-9]. In addition, gibberellins (GAs), cytokinins
(CTKs), auxin (IAA), brassinosteroids (BRs) and nitric
oxide (NO) are often involved in plant immunity [7, 9].
The abundant antagonism and synergism of the phytohor-
mones give plants a wide range of regulatory potential,
enabling them to activate specific defenses in a highly
efficient context [10, 11]. In Arabidopsis, the
SA-dependent signaling pathway is considered to be re-
quired for defense against biotrophs, while the JA and ET
pathways are important against necrotrophs [8].

TFs are also important components of plant defense,
playing important roles in the coordination of hormone sig-
nal interactions, the regulation of cell wall component re-
modeling, and many cell physiological processes. These
immunity-related TFs include members of the ethylene re-
sponse factor (ERF) family [12], the WRKY DNA-binding
protein (WRKY) family [13], the MYB domain protein
(MYB) family [14], the TGACG motif-binding protein
(TGA) family [15], the NO APICAL MERISTEM, ATAF 1,
CUP-SHAPED COTYLEDONS (NAC) family [16], and the
MYC family [17, 18]. Most of the ERF and WRKY proteins
participate in plant defense responses.

Here, we investigated the transcriptome dynamics of
rose petals during both the early and late stages of infec-
tion by B. cinerea. We dissected the transcriptional net-
work governing the rose response to B. cinerea infection
with the aim of exploring the genetic mechanisms
underpinning various aspects of this defense response,
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especially pathogen recognition, hormone signal trans-
duction, and the role of regulatory TFs.

Results

Sequencing and de novo assembly of rose petal genes
following B. cinerea infection

Expression profiles were obtained from rose petals following
infection with B. cinerea. To this end, detached petal disks
were obtained from the outermost whorl of rose flowers and
inoculated with four 2-pL. drops of B. cinerea spore inocu-
lum containing 10° conidia/mL. The control petals were
mock-inoculated using potato dextrose broth (PDB). A pri-
mary disease lesion could be observed in at least one of the
four inoculum drops at 36 h post inoculation (hpi). By con-
trast, no lesions were observed on the mock-inoculated
petals at 36 hpi and 48 hpi. The time points 30 hpi and 48
hpi were chosen for the transcriptomic analysis. The 30 hpi
time point was considered to represent the early response to
B. cinerea infection, as it was prior to the formation of the
primary disease lesions at 36 hpi. The 48 hpi time point was
investigated for the later response, when the lesions were
starting to expand across the petals (Fig. 1).

The sequencing of 12 samples (three replicates each for
30 hpi, 30 h PDB, 48 hpi, and 48 h PDB) resulted in 567
million clean reads comprising a total transcript length of
136,572,005 nt. The de novo assembly of these
high-quality cleaned reads generated 55,130 clusters and
61,267 unigenes, which had an average length of 1173 bp,
N50 = 1755 (Table 1). The assembled sequence length was
an evaluation criterion for the quality of the assembly;
5826 of the assembled unigenes had a length greater than
3000 bp (Additional file 1: Figure S1).

To further validate the expression profiles of the RNA-Seq
data, six transcripts were selected for analysis using
qRT-PCR. The results from the qRT-PCR analysis were gen-
erally in agreement with the expression profiles obtained
using the RNA-Seq data (Fig. 2, Additional file 2: Table S1).

Dynamic transcriptome of rose petals following infection
with B. cinerea
Differentially transcribed genes (DTGs) between the inoc-
ulated and mock-inoculated petals were determined by
comparing their transcript abundances using a cutoff ratio
of >2 and a p-value < 0.5. Compared with the control, the
expression of 2707 genes were significantly changed in the
inoculated petals at 30 hpi, of which 1968 were upregu-
lated and 739 were downregulated. A total of 7658 genes
were significantly differentially expressed at 48 hpi, of
which 5995 were upregulated and 1663 were downregu-
lated. We identified 2113 genes that were significantly dif-
ferently expressed at both 30 hpi and 48 hpi, and these
comprised the focus of this investigation (Fig. 3).

The DTGs in the rose petals were annotated with gene
ontology (GO) terms. Among all processes, genes
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Fig. 1 B. cinerea development on rose petal disks. a Detached petal disks were obtained from the outermost whorl of rose flowers and inoculated
with four 2-pL drops of B. cinerea inoculum, containing 10° conidia/mL, then observed at 36hpi, 30 hpi, and 48 hpi. Primary disease lesions observed at
36 hpi were indicated by arrows. b Lesion diameter following inoculation. Values represent the mean diameter of 32 individual lesions, and error bars
indicate SE. €) Quantification of B. cinerea biomass in rose petals. Fungal biomass was determined using qRT-PCR, comparing B. cinerea internal
transcribed spacer (ITS) relative to the rose RhUbI. Error bars represent the SD of the qRT-PCR results from three independent replicates

corresponding to the metabolism, biosynthesis of
secondary metabolites, plant-pathogen interactions, and
plant hormone signal transduction pathways were sig-
nificantly enriched at 30 hpi and 48 hpi.

Defense-regulated cell surface receptors in response to
Botrytis

Pattern recognition receptors (PRRs) located on the cell
surface constitute the first line of defense for preventing the
invasion of pathogens. PRRs perceive pathogens through
their extracellular domains and initiate downstream disease

Table 1 Summary of the sequencing dataset used to generate
the rose petal transcriptome following B. cinerea infection

[tem Total

No. of reads 567,154,672
No. of unigenes 116,397

Total length of transcripts 136,572,005 nt
Mean length of transcripts 1173 bp

No. of distinct clusters 55,130

No. of distinct singletons 61,267

N50 1755

responses through intracellular domains, co-receptors, or
intracellular binding proteins that bind to them for signal
transmission [6, 19, 20]. Based on annotations using the
Non-redundant Protein Sequence (NR), GO, and Kyoto
Encyclopedia of Genes and Genomes (KEGG) databases,
370 cell-wall receptor proteins were among the differen-
tially expressed genes, including 38 wall-associated receptor
kinases (WAKs), 138 leucine-rich repeat receptors (LRRs),
47 cysteine-rich receptor-like protein kinases (CRKs), 11
lysM-domain  receptor  kinases (LYKs), and 136
lectin-domain containing receptor kinases (LecRKs) (Fig. 4a,
Additional file 3: Table S2).

Defense-induced hormone signal transduction in rose
petals

Hormones act as internal cues to initiate plant defenses.
We identified 325 upregulated genes related to hormone
signal transduction pathways in the DTGs, according to
the pathway ID and KO definitions. More specifically,
54.5% (177/325) were associated with BR signaling,
11.1% (36) with GA, 9.8% (32) with ET, 7.4% (24) with
ABA, 5.5% (18) with TAA, 5.5% (18) with JA, 4.0% (13)
with SA, and 2.2% (7) with CTK signaling (Fig. 4b,
Additional file 4: Table S3). Specifically, a simplified



Liu et al. BMC Genetics (2018) 19:62

Page 4 of 10

14 10
% 12 b RNA-seq 5 " RNA-seq
S 10 } =RT-PCR 5 g mRT-PCR T
8 S
85° 1 83 -
sce b ~ 8@
35 564
| e,
572 £5
¢ O e o

30h/30h 48 h/48 h 30h/30h 48 h/48 h
PDB PDB PDB PDB
30h/30h 48 h/48h
PDB PDB

0 6
5 1 ¢ k) 5 RNA-seq
5% S  [=RT-PCR
g .g_z L 1 = 2 4 T
[ ) 3 -
803} - g 3
X o0 & 2 -
O N S
| 022
-Eg . RNA-seq 1 £5,
< =7 [ mRrT-PCR 5
€ 6 X 0

30 h/30h 48 h/48 h

PDB PDB

biological replicates + SD
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brassinosteroid signaling pathway showed that 49 BAK1,
21 BRI1, one BSK, and two BIN2 genes were signifi-
cantly upregulated (Fig. 4d). ET and JA signaling have
previously been reported to play an important role in
disease defense, and several genes involved in these sig-
naling pathways were found to be upregulated during B.
cinerea infection (Fig. 4d). In the ET signal transduction
pathway, we identified three ETR, five CTRI, and 45
ET-RESPONSIVE TF (ERF) DTGs. In the JA signal
transduction pathway, we found 10 JAZ and 12 MYC2/
bHLH family TFs that were differentially expressed dur-
ing B. cinerea infection.

Defense-responsive TFs in rose petals

Of the DTGs, we identified 188 TFs that were upregulated
in rose petals following the B. cinerea inoculation, includ-
ing ERF, WRKY, bHLH, MYB, NAC, bZIP, TGA, HSF,
GTE, MADS-box, MYC, trihelix, zinc-finger, and NFYC
family members (Fig. 4c). Among the nine TF families in-
volved, the most commonly observed was the ERF family,
with 46 members that had a differential expression ratio
far greater than 2 (Additional file 5: Table S4). The upreg-
ulated TFs were sensitive to B. cinerea, and many were
regulated by hormonal signals, especially BR, ET, and JA
(Fig. 4d).
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Fig. 3 Numbers of DTGs between inoculated and control rose petals at 30 hpi and 48 hpi. a Numbers of DTGs in petals. b Wayne figure of 30
hpi and 48 hpi. Up represents upregulated genes, down represents downregulated genes
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Fig. 4 Distribution of cell-wall receptor proteins, hormone signal transcripts, and TF-related DTGs during petal infection. DTGs were
determined using a cutoff ratio of >2 (p-value <0.05), when comparing expression at 30 hpi and 48 hpi with that of the control.
a Number of unigenes corresponding to cell-wall receptors. LYK: lys domain receptor; WAKs: wall-associated receptor kinase; CRKSs,
cysteine-rich receptor-like protein kinases; LecRK: lectin receptor kinase; LRR: leucine repeat receptor. b Number of hormone signal-related
DTGs in infected rose petals. BR: brassinosteroid; GA: gibberellin; ABA: abscisic acid; ET: ethylene; IAA: auxin; JA: jasmonate; CTK: cytokinin;
SA: salicylic acid. ¢ Number of TF DTGs in infected rose petals. d Simplified ET and JA signal transduction induced by B. cinerea infection

parentheses correspond to the number of upregulated unigenes

[52]. CTR1: constitutive triple response; EIN2: ethylene insensitive 2; EIN3: ethylene insensitive 3; ERF: ethylene response factor; JA-lle:
jasmonate-isoleucine; SCF: Skp/Cullin/F-box; COI1: coronatine-insensitive 1; JAZ: jasmonate ZIM domain; bHLH TFs: basic helix-loop-helix
TFs; BAK1/BRI1, brassinosteroid insensitive 1-associated receptor kinase 1; BSK1, BR-signaling kinase; BSU1, serine/threonine-protein
phosphatase; BIN2, protein brassinosteroid insensitive 2; BZR1/2, brassinosteroid resistant 1/2; PDF1.2: plant defensin 1.2. The numbers in

Exogenous application of BR promotes rose petal
resistance against B. cinerea

Among the eight hormone signal transduction pathways
induced by B. cinerea infection, the BR signaling path-
way was represented in the DTGs to a far greater extent
than the others. Nevertheless, the role of BR in plant
defense against B. cinerea is largely unknown. To con-
firm the crucial role of BR in the petal defense mechan-
ism, we treated rose flowers with 5 mM BR, then
inoculated them with B. cinerea (Fig. 5a). The BR treat-
ment significantly decreased the diameter of the lesions
that formed at the inoculation sites (Fig. 5b), suggesting
that BRs might play an important role in the resistance
to B. cinerea in rose petals.

BR INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1 is
required for B. cinerea resistance

BR INSENSITIVE 1-ASSOCIATED RECEPTOR KIN-
ASE 1 (BAK1) is a protein that interacts with the BR re-
ceptor BRI1, and play a critical role in BR signaling [21,
22]. To investigate whether BAKI contributes to B.
cinerea resistance, three independent Arabidopsis mu-
tants, bakl-3 (Salk_034523) [23], bakI—4 (Salk_116202)
[23] and baki-5 (C408Y in 10th exon) [24] were inocu-
lated with B. cinerea (Additional file 6: Figures S2A).
Disease development was quantified by measuring the
size of the lesions at 72 h post inoculation. Compared
with wild type plant, all three mutants showed signifi-
cantly enlarged diameter of the lesions (Additional file 6:
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Fig. S2B), suggesting that BAK1 is required for plant re-
sistance against B. cinerea.

Discussion

Despite the important economic impact of gray mold
disease on roses, the details of rose defenses during in-
fection by B. cinerea remain largely unknown. Our iden-
tification of DTGs in rose petals during the early stages
of infection provides an overview of the mechanisms
that might be involved in their defense response. We
identified 370 cell-wall receptor protein unigenes, 325
hormone signal transduction pathway-related unigenes,
and 188 TF unigenes that were upregulated following B.
cinerea inoculation, which are likely to mediate the rose
immune response from recognition to defense.

Plants use several types of cell surface receptors to per-
ceive extracellular signals, such as PAMPs. In this study,
five categories of cell-wall receptor protein were found to
be involved in the rose petal response to B. cinerea. The
first category, the LRRs, contains the conserved leucine

repeat sequences, which bind proteins and polypeptides
such as fungal endopolygalacturonases [25]. Recently, an
Arabidopsis LRR, RBPG1, was reported to recognize fungal
endopolygalacturonases from B. cinerea, lending support
to our findings. Another cell-wall receptor protein cat-
egory, the carbohydrate-binding LecRKs, were also found
to be involved in the rose petal defense response. In Arabi-
dopsis, lecrk-VI.2—1 mutants were less able to upregulate
the expression of the pattern-triggered immunity (PTI)
marker genes, while plants overexpressing LecRK-VI.2 had
an increased PTI response, demonstrating that LecRK-VL.2
is a novel mediator of the Arabidopsis PTI response [26].
We found that the CRKs were also involved in the rose
petal response to B. cinerea. These receptors are character-
ized by the presence of one to four copies of domain 26 of
unknown function (duf26), a C—X8-C-X2-C motif in the
extracellular receptor region, in their N-terminus and a
serine/threonine kinase domain in their C-terminus [27].
In barley (Hordeum vulgare), the transient silencing of
HvCRK1 expression in bombarded epidermal cells led to
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an enhanced resistance to Blumeria graminis, but did not
affect R-gene-mediated resistance [28]. Another cell-wall
receptor category identified in our study, the LYKs, were
previously demonstrated to be essential for chitin signaling
(likely as a part of the receptor complex) and the induction
of plant innate immunity [29, 30]. The fifth category of
cell-wall receptors involved in the rose petal response to B.
cinerea, the WAKs, are similar to epidermal growth factors
and can bind oligonated galacturonic acid glycosides pro-
duced by the degradation of the plant cell wall itself, acti-
vating downstream immune responses to prevent further
infection by the fungus [31, 32]. Unlike the first four recep-
tor types, the WAK receptors do not directly perceive the
pathogen itself, but rather recognize its effects. These
cell-wall receptors, which were upregulated in rose petals
during early infection, may provide evidence of the B.
cinerea recognition mechanisms in rose.

The crosstalk and fine-tuning of the hormone signal
transduction networks in plant immunity are a major
focus for current research. Plant hormones such as SA,
JA, and ET play a vital role in signaling the presence of in-
fection and initiating the downstream defense responses.
In our study, the number of unigenes corresponding to
the JA and SA signaling pathways was relatively low, pos-
sibly because the wounding response initiated when the
petal disks were cut may have masked the changes of
these pathways in response to the gray mold infection.
The expression of BR-related genes was significantly
enriched in the infected petals, suggesting their potential
role in the petal defense response. BRs can act antagonis-
tically or synergistically with responses to PAMPs, and the
synergistic activities of BRs on PAMP responses are
known to require BAK1 [33]. After infection with the
pathogen, the expression of ET biosynthesis genes also in-
creased. ET can induce the activation and accumulation of
pathogenesis-related proteins and antimicrobial peptides,
including glucanase, chitinase, and osmotin.

We identified DTGs encoding TFs in the ERF family,
the WRKY family, the bHLH family, the MYB family, and
the NAC family. ERF-family TFs integrate and communi-
cate signals involving SA, JA, and ET [17]. In Arabidopsis,
ERF1, ERF5, ERF6, RAP2.2 (related to AP2.21), and
ORA59 (octadecanoid-responsive  Arabidopsis AP2/
ERF59) are involved in the regulation of plant defense
against B. cinerea [12, 34-37]. The WRKY family partici-
pates in the responses to a variety of abiotic and biological
stresses. WRKY33 was reported to be upregulated by a
variety of defense response pathways following B. cinerea
infection [13]. The TFs of the MYB and NAC families are
involved in ABA-JA interactions and serve as important
regulators of the plant responses to abiotic and biological
stresses [38, 39]. ABA can promote susceptibility to gray
mold and reduce the expression of JA/ET defense-related
genes by influencing the activities of the ERF1 and
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ORA59 TFs in the ET signaling pathway [40-42].
MYC2 is thought to be a positive regulator of the
ABA signaling pathway and a key factor mediated by
JA, and is known to antagonize the regulation of the
JA response to dead parasites [43]. These TFs are reg-
ulated by the phytohormones to control the expres-
sion of the downstream defense-related genes and
enhance plant immunity.

Conclusions

In conclusion, the present research, focusing on the grey
mold infection of rose petals, provides a large amount of
relevant transcriptomic information, from which a gen-
etic defense-response network was elucidated. The re-
sults suggest that the phytohormone BR plays a critical
role in rose petal defense against B. cinerea. Further
study on this phytohormone and related DTGs can pro-
vide us novel insights into rose resistance to B. cinerea
and this knowledge can be exploited for durable resist-
ance against this pathogen.

Methods

Plant and fungal growth and plant infection

Roses (Rosa hybrida, cv. Samantha) were grown in glass-
houses in Nankou, Changping District, Beijing, China.
Rose flowers with fully open buds were harvested at de-
velopmental stage 2, their stems were immediately
placed in water. The flower stems were re-cut to 20 cm
in length under water and placed in deionized water to
await further processing. The rose petals were cut into
12.5-mm disks, which were placed on 0.4% water agar,
with 16 disks per petri dish.

The B. cinerea inoculum was produced by growing strain
B05.10 [44] on a solid medium (potato dextrose agar; 39 g
per L dH20O, pH ~5.6) at room temperature for 14 days.
Spore inoculum was prepared by harvesting spores in
water, filtering through glass wool to remove the hyphae,
and suspending the filtrate in potato dextrose broth (PDB;
24 g per L dH20) with 10° conidia/mL. Four 2-uL drops of
B. cinerea inoculum or PDB (mock) were dropped onto
each petal disk. Infected and control disks were individually
sampled in a randomized manner from each of the three
trays at 30 hpi and 48 hpi, with three biological repeats for
both infected and control treatments at each time point.
Petal disks were immediately frozen in liquid nitrogen at
the time of harvesting and stored at — 80 °C.

Arabidopsis plants were grown in a climate chamber
at 22 °C and 70% relative humidity under a 16/8 h light/
dark cycle. Leaves of 25 days old Arabidopsis plants were
inoculated with 2-pL drops of B. cinerea inoculum. Fi-
nally, 6-7 leaves per Arabidopsis plant and 4 plants per
genotype were used for inoculation, leading to a total of
at least 24 lesions per mutant. Lesion sizes were
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measured at 72 hpi and analyzed statistically by a Stu-
dent’s ¢-test.

Total RNA extraction and RNA-Seq library preparation
The material for RNA-seq are petal discs, as showed in
Fig. 1a. Total RNA was extracted using the hot borate
method as previously described [45], and treated with
RNase-free DNase I (Promega) to remove any contamin-
ating genomic DNA. Three biological repeats were per-
formed for both time points. Strand-specific RNA
libraries were constructed using the protocol described
previously [46], then sequenced on a HiSeq 2500 system
(Ilumina), according to the manufacturer’s instruc-
tions (Additional file 7). The raw reads were deposited
into the NCBI SRA database under accession no.
PRJNA414570.

RNA-Seq data processing, assembly, and annotation

First, the raw data was cleaned by removing the
adaptor-containing sequences,poly-N, and low-quality
reads, then reads shorter than 40 bp were removed with
Q-value <5. The remaining high-quality, clean reads were
used in subsequent analyses. The remaining high-quality,
clean reads were used in subsequent analyses. Assembly
was performed with Trinity software [47] with min_kmer_-
cov set to generate contigs and unigenes. All other parame-
ters set to their defaults. To remove the redundancy of the
Trinity-assembled contigs, the contigs were again assem-
bled de novo using iAssembler [44—48] (Additional file 8).
The final unigenes were annotated using the NR (NCBI
non-redundant protein), NT (NCBI non-redundant tran-
script), Swiss-Prot, KEGG (KEGG Ortholog), KOG
(eukaryotic Ortholog Groups), GO libraries.Using the
BLASTX algorithm with a significance threshold of E-value
<10"°. The unigene expression was calculated using the
FPKM (fragments per kb per Million reads) method. DTGs
were analyzed by the edgeR R package and defined as genes
with a false discovery rate of < 0.001 and at least a two-fold
difference. Transcription factors were predicted by
BLASTX searching of plantTFDB with E-value <10 °.
KEGG pathway enrichment of DTGs was performed using
KOBAS. The GO term enrichment was analysis by the
GOseq R package based on Wallenius non-central
hyper-geometric distribution.

Quantitative RT-PCR

To confirm the RNA-Seq results, the transcript abun-
dance of six selected genes was analyzed using qRT-PCR,
as previously described [49]. Briefly, the total RNAs of
three biological repeats were equivalently mixed for each
sample. cDNA was generated using Takara Reverse Tran-
scriptase M-MLYV, and 1 pL of the first strand cDNA was
used as a template in the reaction with the KAPATM
SYBRR quantitative PCR kit (Takara), which was run on a
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StepOnePlus Real-Time PCR System (Thermo Fisher Sci-
entific). Rhlbi was used as a housekeeping gene [50]. The
primers used for determining transcript abundance are
listed in Additional file 2: Table S1.

Exogenous BR treatment

Flowering rose stems were cut to lengths of 25 cm and
placed in 5 pM 2,4-epibrassinolide [51] for 24 h, with
two stems per bottle. Stems treated with water were
used as the control. The BR-treated and control petals
were inoculated with 2 pL B. cinerea spore inoculum
and kept on 0.4% water agar, as described above. The
diameters of the lesions were measured at 48 hpi.

Additional files

Additional file 1: Figure S1. Length distribution of the assembled
unigenes. (DOCX 37 kb)

Additional file 2: Table S1. List of all primers used in this study.
(DOCX 15 kb)

Additional file 3: Supplementary Table S2. Defense-regulated cell sur-
face receptors in response to Botrytis. (XLSX 47 kb)

Additional file 4: Supplementary Table S3. Defense-induced hormone
signal related genes in rose petals. (XLSX 26 kb)

Additional file 5: Supplementary Table S4. Defense-regulated transcrip-
tional factors in response to Botrytis. (XLSX 35 kb)

Additional file 6: Figure S2. BR INSENSITIVE 1-ASSOCIATED RECEPTOR
KINASE 1 is required for B. cinerea resistance. A) The schematic of the
genomic structure of BAKT. Exons and introns are indicated with black
boxes and lines, respectively. The T-DNA insertion sites are marked with
triangles and missense mutation sites are indicated with arrows. B) All
three independent mutant alleles of BAKT used in this study showed
compromised resistance against B. cinerea. (DOCX 146 kb)

Additional file 7: Table S5. All sample clean data statistics. (DOCX 14 kb)

Additional file 8: Supplementary Data. All assembled Unigenes. (FA
125981 kb)
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